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Abstract

Background: In the present study, the phenolic compounds were prepared using ultrasonic-aid extraction from
sugar beet molasses (SBM).

Methods: Gallic acid (GA), cyanidin-3-O-glucoside chloride (CGC) and epicatechin (EP) were produced after column
chromatography from the extraction, and further detected using NMR, QTOF-MS and ESI-MS/MS.

Results: The three compounds exhibited strong antioxidant activities including DPPH radical scavenging activities,
ABTS radical scavenging activities and ORAC values. GA showed the strongest antioxidant activity. Antitumor activities
significantly increased in a dose-dependent manner. In particular, the CGC had growth inhibitory activities of 94.86,
87.27 and 67.13 % against the human colon (CACO-2), hepatocellular (HepG2) and breast (MCF-7) carcinoma
cell lines, respectively, at the highest concentration of 400 pug/mL of the extracts. These results suggest that

functional foods.

the three compounds are key chemical compositions valuable for preparing functional foods in the food industry.
Conclusions: The results suggested that SBM is a natural source of antioxidant and antitumor agents for preparing
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Background
Sugar beet is an important sugar crop cultivated for sugar
production [1, 2]. Sugar beet molasses (SBM) is a by-
product in sugar beet processing [3]. Early studies found
that SBM can be used to produce alcohol and fermentation
medium [4, 5]. While recent study reported that SBM
showed higher antioxidant activity, anti-inflammatory and
anti-proliferative activities [6, 7], the bioactive components
of SBM are mainly phenolics, alkaloids, tannins, saponins,
terpenoids, steroids, and volatile oil [8], and specific bio-
active compounds such as syringic acid, vanillin, ferulic
acid, hydroxybenzaldehyde, hydroxybenzoic acid, luteolin/
kaempferol, feruloyl-arabinose-arabinose and caffeoyltarta-
ric acid which have been prepared and identified [9].
Phenolic contents have been demonstrated to have
a variety of bioactivities such as anti-aging, anti-
fatigue, anti-hypoxia, immunological, anti-radiation,
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anti-inflammatory, anti-proliferative and hypoglycemic
effects [10-14]. Meanwhile many investigations revealed
that phenolic contents contribute to the antioxidant and
antitumor activities of plants [15]. Antioxidants can
restrict the deleterious effects of these oxidant reactions
and these restrictions can involve scavenging free radicals
or preventing radical formation [16]. However, to the best
of our knowledge, there were few reports on the antioxi-
dant and antitumor activities of phenolics from sugar beet
molasses (SBMP). Given the rich natural resources of
SBM, the extraction researches of SBMP will have a highly
practical value.

The primary objective of the present study is to
separate and purify the phenolic compounds in SBM,
identify the structure of prepared phenolic compounds,
and study the bioactivity of the prepared phenolic
compounds in SBM.

Methods

Materials and reagents

SBM was provided by Xinjiang Green Xiang Sugar Indus-
try Co., Ltd (Tacheng, China). 2,2-diphenyl-1-picryhydrazyl
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(DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS), ascorbic acid (Vc), fluores-
cein, 2,2"-azobis (2-methylpropionamidine) dihydrochloride
(AAPH), trolox [(%)-6-hydroxy-2,5,7,8-tetramethylchro-
man-2-carboxylic acid] and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) were purchased
from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
Dulbecco’s modified eagle medium (DMEM), penicillin-
streptomycin were purchased from Gibco Co. (Long
Shang Industry Park, Beijing, China). Fetal bovine serum
(FBS) was purchased from Zhejiang Tianhang Biological
Technology Co. (Zhejiang, China). Methanol (HPLC-
grade) was purchased from Merck Co. (Whitehouse
Station, NJ, USA). Ultra-pure water was prepared by a
Milli-Q system (Millipore, Bedford, USA).

Extraction, isolation and purification

The SBM (2.0 kg) was extracted by 30 mL 70 % (w/v) etha-
nol using a RK102H ultrasonic (BANDELIN SONOREX,
Germany). Extraction conditions were ultrasonic power,
450 W, HCI concentrations 1.6 mol/L, temperature 40 °C
and time 60 min. The extract was concentrated at 45 °C in
vacuum using a rotary evaporator (RE-52 A, Yarong Co.
Ltd.,, Shanghai, P. R. China) to obtain the total extraction
fraction (634.02 g). Then, the total extracted fraction was
suspended in distilled water. The resulting solution was
successively partitioned with different solvents which
yielded petroleum ether fraction, chloroform fraction, ethyl
acetate fraction, z-butanol fraction and aqueous fraction.
After drying in vacuo, five fractions were obtained. These
fractions included the petroleum ether fraction (5.26 g,
yield coefficient 0.83 %), chloroform fraction (32.97 g, yield
coefficient 5.20 %), ethyl acetate fraction (76.7 g, yield
coefficient 12.10 %), n-butanol fraction (58.71 g, yield co-
efficient 9.26 %), and water fraction (142 g, yield coeffi-
cient 22.40 %). In the biological activity screening tests,
the ethyl acetate fraction showed stronger antioxidant
and antitumor activities than other four fractions.
Therefore, the ethyl acetate fraction was chosen for
further purification.

The ethyl acetate fraction (70.0 g) was loaded onto a col-
umn (3.5 cm x 100 cm) of macroporous resin D101, and
the column was stepwise eluted with water, 30, 50, 70, and
95 % ethanol at a flow rate of 10 mL/min to yield five sub-
fractions. After HPLC analyses, 30 % ethanol sub-fraction
was further purified using a Sephadex LH-20 column chro-
matography and eluted with methanol, followed by a semi-
preparative HPLC eluting with methanol/water, to yield
compound 1 (1293 mg), compound 2 (241 mg) and com-
pound 3 (486 mg). The semi-preparative high performance
liquid chromatography (HPLC) system consisted of a Cyg
column (RP;g 10 pm, 250 mm x 20 mm), a Waters 600
pump and a Waters 2998 Diode Array Detector (DAD)
(Waters, Milford, MA, USA) analyzed at 35 °C. The mobile
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phase was 1 % acetic acid aqueous solution (A) and metha-
nol (B) with a gradient program of 0—10 min, linear gradi-
ent 5-10 % B; 10-70 min, linear gradient 10-20 %
B; 70-90 min, 20 % B isocratic; 90-130 min, linear
gradient 20-40 % B; 130-140 min, linear gradient
40-100 % B and 140-180 min 100 % B isocratic elu-
tion at a flow rate of 15 mL/min. T 2 mL of samples
were injected. Absorption wavelengths were set at
280 and 360 nm. The extraction and separation pro-
cedure of SBMP is shown in Fig. 1.

Identification of purity

Sample purity was analyzed using an HPLC-DAD
system, which consisted of a C;g column (XBridge™
Shield, RPyg 5 um, 250 mm x 4.6 mm), a Waters 600
pump and a Waters 2998 DAD (Waters, Milford, USA),
column temperature was set at 35 °C. The mobile phase
was 1 % acetic acid aqueous solution (A) and methanol (B)
with a gradient program of 0—5 min, linear gradient 5-
10 % B; 5-35 min, linear gradient 10-20 % B; 35—-45 min,
20 % B isocratic; 45—65 min, linear gradient 20-40 % B;
65-70 min, linear gradient 40-100 % B and 70-90 min
100 % B isocratic elution at a flow rate of 1 mL/min. The
injection volume is 20 pL, and the detection wavelengths
were set at 280 and 360 nm.

Identification of compounds

The purified compounds from SBM were identified by
electrospray ionization-mass spectrometry (ESI-MS), "H
NMR and *C NMR spectrometry. The ESI-MS was car-
ried out in a LCQ-Fleet mass spectrometer (Thermo
Fisher Scientific, Waltham, MA), with an electrospray
ionization source using a negative mode (/z 50-800). 'H
NMR spectra and >*C NMR spectra were recorded on a
Bruker Avance DMX-500 spectrometer (Bruker Biospin
GmbH, Germany), operating at 500 and 125 MHz for 'H
and '°C, respectively, using D,O or deuterated dimethyl
sulfoxide (DMSO-d6). In D,O, tetramethylsilane (TMS)
was used as the internal standard. In DMSO-d,, the re-
sidual solvent was used as the internal standard. Chemical
shifts were expressed in § (ppm) downfield from TMS as
an internal standard, and coupling constants were reported
in hertz.

Assay of total antioxidant activity

The scavenging activity on DPPH free radical (DPPH)
was measured according to the reported method with
some modifications [17]. 0.5 ml of sample solution
was mixed with 2.0 ml DPPH methanol solution
(6 x 107> mol/L) and the mixture was shaken vigor-
ously and incubated in dark at 30 °C for 30 min.
Then, the absorbance was measured at 517 nm. Deionized
water and ascorbic acid (V¢) were used as the blank and
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Fig. 1 The extraction and separation procedure of sugar beet molasses

positive control, respectively. The ability to scavenge
DPPH was calculated by the eq. 1:

Abs;-A
Scavenging activity (%) = (l—bistsz> x 100 (1)
0

where Abs, is the absorbance of water instead of sample
solution, Abs; is the absorbance of the sample solution,
and Abs, is the absorbance of methanol instead of
DPPH solution.

The ABTS radical scavenging activity was assessed
according to the recent reports with some modification
[18, 19]. Briefly, ABTS solution was produced by react-
ing 5 mL of ABTS (7 mM) and 5 mL of potassium
persulphate (2.45 mM) for 12-16 h in the dark at
room temperature. This mixture was then diluted
with absolute ethanol to obtain an absorbance of
0.70 £0.02 at 734 nm before use. Then, 0.4 mL of
tested sample at different concentrations was mixed
with 3.0 mL of ABTS solution. The mixture was in-
cubated for 6 min in he dark and the absorbance was
measured at 734 nm against blank. Ascorbic acid (Vc)
with the same concentration was used as a positive

control. The ABTS scavenging activity was calculated
using the eq. 2:

A
Scavenging activity (%) = <l—i> x 100 (2)

C

where A, is the absorbance of control without sample,
Ay, is the absorbance of the sample.

The oxygen radical absorbance capacity (ORAC) assay
was carried out according to the modified method of Ou
et al. [20]. Briefly, sample solution was prepared with
75 mM phosphate buffer (pH 7.4). The 20 pL sample
aliquots or Trolox standard (6.25-100 pM) were added
in a black 96-well plates (Greiner Bio-one Cellstar,
Frickenhausen), and then 200 pL of 95.6 nM fluorescein
solution was added to each well. The mixture was incu-
bated for 30 min at 37 °C. Finally, 20 pL of AAPH was
automatically injected, and the microplate was shaken for
20 s before each measurement. The fluorescence was
measured using a Varioskan Flash Multimode Reader
(Thermo Fisher Scientific Inc.) at excitation of 540 nm
and emission of 565 nm for 35 cycles every 3.0 min. The
buffer was used as blank. The ORAC value (pmol Trolox
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equivalents (TE)/g) refers to the required Trolox content
(umol) when ORAC of Trolox is equal to 1 g sample.

Determination of antitumor activity
Human colon (CACO-2), hepatocellular (HepG2) and
breast (MCF-7) carcinoma cell lines were provided by the
Medical College of Sun Yat-Sen University (Guangzhou,
China). The cells were cultured in DMEM containing
10 % FBS, 100 pg/mL streptomycin and 100 U/mL peni-
cillin in a humidified incubator with 5 % CO, at 37 °C.
The antitumor activities of samples were evaluated using
the MTT assay with some modifications [21]. Briefly,
CACO-2, HepG2 and MCE-7 cells were harvested during
the logarithmic growth phase, seeded in a 96-well plate
(5% 10* cells/mL), and incubated at 37 °C in an atmos-
phere of 5 % CO,. After anchoring to the wells, additional
medium (100 pL) containing different concentrations of
test samples were added to each well. The cells were then
incubated at 37 °C for 48 h in an atmosphere containing
5 % CO,. Then, 20 puL of MTT solution (5 mg/mL) was
added to each well, and the incubation was continued for
an additional 4 h. Then the supernatant was removed and
150 pL of DMSO was added to each well. The plate was
shaken for 10 min to dissolve formazan crystals. The ab-
sorbance of the above DMSO solution was measured
at 570 nm by a microplate reader. The buffer and 5-
fluorouracil were used as the blank and positive con-
trol respectively. The inhibitory rate was calculated
using the eq. 3:

Ag-A
A= (1—A—A}’) x 100% (3)

c—41p

where A is the cancer cell growth inhibitory rate; A. is
the absorbance of the control; A, is the absorbance of
sample; and Ay, is the absorbance of the blank.

Statistical analysis

Data were analyzed using SPSS (SPSS Inc., Chicago, IL,
USA) and presented as mean + SD with triplicates. Signifi-
cance was determined at p < 0.05 by analysis of variance
(ANOVA) followed by Duncan’s least significant test.

Results and discussion

Structural identification

Three compounds isolated and obtained from SBM were
identified as gallic acid (GA), cyanidin-3-O-glucoside chlor-
ide (CGC) and epicatechin (EP). Their spectroscopic data
were listed below.

Gallic acid (Compound 1): C;HgO5 white powder, pur-
ity, 99.2 %. QTOF-MS m/z: 177.0158 [M + Na-H,O]",
ESI-MS/MS m/z: 177, 153, 127. 'H-NMR (500 MHz,
CDCly) 8 H: 7.12 (2H, s, H-2, 6). "*C-NMR (125 MHz,
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CDCl;) & C: 121.2 (C-1), 1094 (C-2), 145.3 (C-3), 138.6
(C-4), 145.3 (C-5), 109.4 (C-6), 168.5 (COOH) [22].

Cyanidin-3-O-glucoside chloride (Compound 2):
C,1H,104;, dark brown crystalline powder, purity, 98.7 %.
QTOF-MS m/z:450.1157 [M + H]*, ESI-MS/MS m/z:450,
287. '"H-NMR (CD3COCD3, 500 MHz) & H: 8.92 (1H, s,
H-4), 6.88 (1H, d, J=2.0 Hz, H-6), 6.91 (1H, s, H-8), 8.10
(1H, d, /=10 Hz, H-2'), 702 (1H, d, J = 8.5Hz, H-5'),
8.26 (1H, d, J=7.5Hz, H-6"), 5.28 (1H, d, J = 4.5Hz, H-1"),
3.13 (1H, t, H-4"), 3.38 (1H, q, H-3"), 3.31 (1H, q, H-2"),
3.48 (1H, m, H-5"), 3.82 (1H, m, H-6a"), 3.71 (1H, m, H-
6b") [23].

Epicatechin (Compound 3): C;5H;406 white crystalline
powder, purity, 99.5 %. QTOF-MS m/z:291.0863 [M +
H]*, ESI-MS/MS m/z: 291, 273, 165, 139. 'H-NMR
(CD3COCD3, 400 MHz) & H: 7.03 (1H, d, J=2.0 Hz,
H-2"), 6.82 (1H, d, /=8.0 Hz, H-5"), 6.77 (1H, dd, J =
8.0, 2.0 Hz, H-6"), 5.99 (1H, d, /=2.0 Hz, H-8), 5.89
(1H, d, J = 2.0 Hz, H-6), 4.86 (1H, s, H-2), 4.11 (1H, m,
H-3), 2.85 (1H, dd, /= 16.4, 4.4 Hz, H-4), 2.72 (1H, dd,
J=164, 32 Hz, H-4). '*C-NMR(CD3COCD3, 100
MHZ,) § C: 28.83 (C-4), 68.33 (C-3), 82.70 (C-2), 95.41
(C-8), 96.13 (C-6), 100.62 (C-10), 115.23 (C-5"), 115.70
(C-2"), 120.06 (C-6"), 132.14 (C-1"), 145.64 (C-3"), 145.72
(C-4"), 156.89 (C-9), 157.22 (C-5), 157.73 (C-7) [24, 25].

Antioxidant activity

The DPPH radical scavenging activities of extractions,
GA, CGC and EP were shown in Fig. 2. All fractions
showed remarkable scavenging activity against DPPH
radicals in a dose-dependent manner. The scavenging ac-
tivity of the ethyl acetate fraction was higher than those of
other fractions (Fig. 2a). GA showed higher scavenging
activities against DPPH radicals than Vc. CGC and EP
showed relatively lower scavenging activities (Fig. 2b).

The ABTS radical scavenging activities of each fraction,
GA, CGC and EP were shown in Fig. 3. All fractions
showed remarkable scavenging activity against ABTS
radicals in a concentration-dependent manner. The
scavenging activity of the ethyl acetate fraction was
higher than those of other fractions (Fig. 3a). GA
showed higher scavenging activities against ABTS
radicals than Vc. CGC and EP showed relatively lower
scavenging activities (Fig. 3b).

The oxygen radical absorbance capacities of samples
were shown in Fig. 4. As shown in Fig. 4a, all the extrac-
tion fractions showed strong oxygen radical absorbance
capacity. The ORAC values were in the decreasing order
of ethyl acetate fraction > n-butanol fraction > water
fraction > chloroform fraction > petroleum ether frac-
tion. The ORAC values of three compounds are shown
in Fig. 4b. GA showed stronger oxygen radical absorb-
ance capacity than Vc while those of CGC and EP were
relatively low.
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According to the results of DPPH, ABTS radical scaven-
ging and ORAC assays, the ethyl acetate fraction showed
the strongest antioxidant activity among five extraction
fractions. The three compounds isolated from the ethyl
acetate fraction could be explored as natural antioxidants
as they showed strong antioxidant activities. GA showed
the strongest antioxidant activity, followed by Vc which is
greater than those of the CGC while EP showed the least
antioxidant activity.

The three compounds, GA, CGC and EP, obtained in
our study are three typical phenolic compounds in plants
which have been reported to possess strong antioxidant
activity [26, 27]. According to reports, free hydroxyl
groups in phenolics are mainly responsible for antioxidant
activity [28, 29]. GA, CGC and EP, belonging to the phen-
olic compounds, are rich in multiple phenolic hydroxyl
groups, which have been considered to be important
antioxidants for a long time, and their antioxidant ac-
tivities could be attributed to the numerous hydroxyl
groups present on their structures. However, according to

the literature [29, 30], the number of hydroxyl groups
bonded to the aromatic ring and their positions are prob-
ably the most important but not the only factors influen-
cing the antioxidant activities of phenolic components.
Meanwhile, character of substituents (carboxyl or acetyl
group) and their position in relation to the hydroxyl groups
seem to influence the antioxidant or anti-radical features.

Antitumor activity

The antitumor activities of five fractions against cancer
cells are shown in Fig. 5. Among the five extraction
fractions, the ethyl acetate fraction showed the highest
inhibitory effect on CACO-2 (Fig. 5a), HepG2 (Fig. 5b) and
MCE-7 (Fig. 5c) cell proliferation at the concentrations
ranging from 25 to 400 pg/mL. The inhibitory effect was
displayed in a dose-dependent manner. As shown in Fig. 6,
the inhibitory rates of the ethyl acetate fraction on CACO-
2, HepG2 and MCEF-7 cells were higher than other frac-
tions. The degree of antitumor activities of the ethyl acetate
fractions showed that active compounds may be more

1009 A
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Fig. 3 ABTS radical scavenging activities of each fraction and compound isolated from SBM. a PEF: petroleum ether fraction; CF: chloroform fraction;
EF: ethyl acetate fraction; BF: n-butanol fraction; WF: water fraction; b GA: gallic acid, CGC: cyanidin-3-O-glucoside chloride; EP: epicatechin. All results
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concentrated in the ethyl acetate fraction than may be
present in other fractions.

As shown in Fig. 6, GA, CGC and EP showed significant
antitumor activities. CGC exhibited the strongest
inhibitory effect on CACO-2 (Fig. 6a), HepG2 (Fig. 6b)
and MCF-7 (Fig. 6¢) cells. The inhibitory rate of CGC
(400 pg/mL) was about 95 %. Additionally, the inhibi-
tory rates of CGC (all concentrations) were much
higher than that of 5-fluorouracil. However, GA and
EP showed relatively weak inhibitory effects on the
CACO-2, HepG2 and MCE-7 cells, and the inhibitory
rates increased slowly with the increase in their con-
centration. From previous studies, compounds with
higher antioxidant activities always had higher antitumor

activity and prevented the cellular senescence and apop-
tosis [9, 31]. However, although CGC showed lower anti-
oxidant activity than GA, it had the strongest inhibitory
effects on the cancer cell proliferation.

Early studies showed that GA, CGC and EP had anti-
cancer activity. GA has been shown to have antitumor
activity in many cancer cells without damaging normal
cells [32-36]. Wang et al. [32] reported GA induced
apoptosis by triggering the extrinsic or Fas/FasL pathway
as well as the intrinsic or mitochondrial pathway in
MCE-7 cells. Filipiak et al. [33] reported CGC showed
inhibitory activity against gelatinases corresponding to
its cytotoxic activity in HT1080 cells. Xu et al. [34]
reported CGC attenuated ethanol-induced migration/
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invasion of breast cancer cells expressing high levels of
ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a
concentration dependent manner. Zhao et al. [35] re-
ported GA significantly decreased human cervical cancer
cell proliferation and tube formation in human umbilical
vein endothelial cells. Siddique et al. [36] reported EP
could cause a decrease in the proliferation, guanosine
triphosphate-bound Ras protein, Akt phosphorylation
and NF-kB transcriptional activity of premalignant and
malignant Krasactivated PDE cells. Though the antitu-
mor activities of these compounds had been previously
reported, the mechanism(s) of antitumor activity of the
individual compound needs to be investigated. However,
the presence of the three compounds may be responsible
for the antioxidant and antitumor activities exhibited by
SBM and suggested that SBM might be used as an addi-
tive in antitumor food.

Conclusions

Three compounds, Gallic acid (GA), cyanidin-3-O-glucoside
chloride (CGC) and epicatechin (EP) and the main
compounds in SBM with high antioxidant and antitu-
mor activities. GA possessed the strongest antioxidant
activity. CGC showed strong antitumor activities against
human colon (CACO-2), hepatocellular (HepG2) and
breast carcinoma cells. The antitumor activity was higher
than positive control (5-fluorouracil). Further studies will
be needed to investigate other chemical compounds and

bioactivity of SBM. These results suggest that SBM is a
potential source of antioxidant and antitumor agents for
preparing functional foods.
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