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Abstract

Background: Advanced glycation end-products (AGEs) play a significant role in the development and progression
of vascular complication in diabetes. Anthocyanin has been recently reported to possess antiglycating activity. This
study aimed to determine whether a naturally occurring anthocyanin, cyanidin-3-rutinoside (C3R) inhibits
methylglyoxal (MG) induced protein glycation and oxidative protein and DNA damage.

Methods: C3R (0.125-1 mM) was incubated with bovine serum albumin and MG (1 mM) for 2 weeks. The
formation of fluorescent AGEs was measured by using spectrofluorometer and thiol group content were used to
detect protein oxidative damage. Gel electrophoresis was used to determine whether C3R (0.125-1 mM) reduced
DNA strand breakage in a glycation model comprising lysine, MG and/or Cu”*. The generation of superoxide anions
and hydroxyl radicals were detected by the cytochrome ¢ reduction assay and the thiobarbituric acid reactive
substances assay. MG-trapping capacity was assessed by high performance liquid chromatography (HPLQ).

Results: C3R (0.25-1 mM) reduced the formation of fluorescent AGEs and depleted protein thiol groups in bovine
serum albumin mediated by MG. At 1 mM C3R inhibited oxidative DNA damage in the glycation model (p < 0.05)
and at 0.5-1 mM prevented Cu?* induced DNA strand breakage in the presence of lysine and MG. The findings
showed that C3R reduced the formation of superoxide anion and hydroxyl radicals during the glycation reaction of
MG with lysine. C3R directly trapped MG in a concentration and time dependent manner (both p < 0.001).

Conclusions: These findings suggest that C3R protects against MG-induced protein glycation and oxidative
damage to protein and DNA by scavenging free radicals and trapping MG.
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Background

Methylglyoxal (MG) is recognized as the most react-
ive glycating agent, generated during glycation and
endogenously via carbohydrate, lipid and protein
metabolism, especially during the glycolysis pathway
[1, 2]. Whilst the glyoxalase defense system converts
the damaging MG into D-lactate via the glyoxalase
enzyme complex, elevated tissue and plasma levels of
MG are commonly observed in diabetes [3, 4].
Methylglyoxal hydroimidazolone (MG-H1) is reported
to be the most abundant MG-derived AGE modifica-
tion in vivo leading to protein dysfunction [5]. The
interaction of AGEs with a receptor for AGEs
(RAGE) triggers signal transduction by activation of
the MAPK pathway, resulting in reactive oxygen spe-
cies (ROS) overproduction and inflammation [6]. The
glycation reaction of amino acids with MG directly
generates ROS, causing damage to cellular protein
and DNA [7-10]. In particular, oxidative damage of
DNA is associated with the development of several
pathologies, including physiological ageing, metabolic
syndrome, diabetes, cancer and cardiovascular dis-
eases [11-13].

MG has been recognized as a potential target for inter-
vention and novel pharmacological strategies are being
developed to limit its accumulation and minimize its
detrimental effects. Of these strategies, the ability for
some AGE inhibitors to trap MG has received consider-
able interest [14]. The early clinical trials with amino-
guanidine (AG) showed great promise as an AGEs
inhibitor. However, studies in people with diabetic ne-
phropathy were terminated following safety and efficacy
concerns [15, 16]. Alternatively, studies on AGE inhibi-
tors from natural products show more promise to com-
bat AGE-associated diseases by scavenging free radicals,
or by directly trapping MG. In this regard, pyridox-
amine, a form of naturally occurring vitamin B and in-
ducer of glyoxalase enzyme expression -isothiocyanates
and sulforaphanes found in cruciferous vegetables, have
been reported to have some promise [17, 18]. In particu-
lar, anthocyanins, the colourful pigment in various fruits
and vegetables reduced ROS generation in human
HepG2 cells exposed to a high glucose environment
[19]. This could explain, in part their biological effective-
ness as anti-oxidant, anti-carcinogenic, anti-microbial
and anti-inflammatory agents and their role in amelior-
ating hyperglycemia by improving insulin sensitivity via
the cAMP-activated protein kinase pathway in diabetic
mice [20-23]. A derivative of anthocyanin, cyanidin-3-
rutinoside (C3R), maybe particularly important as it de-
lays postprandial glycemia by inhibiting a-glucosidase
and pancreatic a-amylase which play an important role
in glucose metabolism [24-26]. Most recently, C3R
inhibited ribose-, fructose-, glucose- and galactose-
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induced protein glycation and oxidation in vitro [27].
Collectively these findings suggest that C3R may prevent
MG-induced AGEs formation and oxidative protein and
DNA damage which have not been investigated
previously.

This study aimed to determine whether C3R inhibited
MG-induced protein glycation (formation of AGEs) and
oxidation (depletion of thiol groups) in vitro, and re-
duced MG/lysine-induced DNA damage using a plasmid
DNA assay. To investigate possible mechanisms of ac-
tion, we evaluated the role of C3R in reducing the gener-
ation of superoxide anion and hydroxyl radicals as well
as direct scavenging of the MG. Due to the complexity
of the glycation cascade, in vitro models were used as
they enabled identification of the pathways of action.

Methods

Chemicals and Reagents

Bovine serum albumin (BSA) fraction V was purchased
from Fisher scientific (Hudson, NH, USA). 40 % solution
methylglyoxal (MG), 5,5 -dithiobis (2-nitrobenzoic acid)
(DTNB), o-phenylenediamine (0-PD), 5-methylquinoxaline
(5-MQ), 2-deoxy-D-ribose, 2-thiobarbituric acid (TBA), L-
cysteine and aminoguanidine hydrochloride (AG) were pur-
chased from Sigma (St. Louis, MO, USA). L-lysine hydro-
chloride was purchased from Himedia (L.B.S. Marg, MB,
India). Trichloroacetic acid, methanol (gradient grade for li-
quid chromatography) and guanidine hydrochloride were
purchased from Merck (Darmstadt, Germany). Cytochrome
¢ was obtained from Affymetrix (Santa Clara, CA, USA).
Cyanidin-3-rutinoside chloride was synthesized from
quercetin-3-rutinoside according to a previous study [28].

Bovine serum albumin (BSA)-methylglyoxal assay

The glycated BSA was generated according to a previ-
ous study [29]. In brief, 10 mg/mL of BSA was incu-
bated with 1 mM MG in 0.1 M phosphate buffered-
saline (PBS, pH 7.4) containing 0.02 % sodium azide
in the presence or absence of C3R (0.125-1 mM) or
AG (1 mM) at 37 °C for 1 and 2 weeks. PBS was
used as a blank and dimethylsulfoxide (DMSO) at a
final concentration 4 % was used as solvent to dis-
solve C3R. The formation of fluorescent AGEs was
determined using a spectrofluorometer (Perkin Elmer®,
Finland) at excitation wavelength of 355 nm and
emission wavelength of 460 nm. The results were
expressed as percentage of inhibition:

Inhibition of fluorescent AGEs(%)
= [((Fc-Feg)-(Fs-Fsp)/(Fc-Fep))] < 100

Fc was fluorescence intensity of MG with BSA and
Fcp were the fluorescence intensity of blank. Fg and Fgp
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were the fluorescence intensity of C3R or AG with BSA/
MG and blank, respectively.

Determination of thiol group content

Thiol groups in glycated BSA were measured after 1 and
2 weeks of incubation according to the Ellman assay
[30]. Briefly, BSA samples (10 pL) were mixed with
2.5 mM DTNB (90 pL) for 15 min. The absorbance was
measured at 412 nm. The free thiol concentration was
calculated by using a standard curve of L-cysteine.

Analysis of DNA strand breaks

The cleavage of plasmid DNA was analyzed according
to a previous report [9]. Briefly, pUC19 plasmid DNA
was purified from Escherichia coli (E. coli) cultures
using a QIAprep°spin miniprep kit (Santa Clarita,
USA). Plasmid DNA (250 ng) was incubated with
50 mM lysine, 50 mM MG, and 0.125-1 mM C3R
with or without 300 uM Cu®* at 37 °C for 3 h. Sam-
ples were frozen immediately at -20 °C to stop reac-
tions. After 90 min, the plasmid DNA was mixed
with DNA loading dye and then resolved by 0.8 %
agarose gel electrophoresis at 80 V in TBE buffer for
60 min. Plasmid DNA fragments were visualized and
photographed by a Gel Doc imager (Syngene, UK).
The relative amounts of supercoiled (SC) and open
circular (OC) DNA was quantified by the intensities
of the band obtained using GeneTools software (Syn-
gene, UK) and the percentage of opened circular
DNA (% OC) was calculated using the following
equation. The results were expressed as relative %
OC after subtracting by %OC of control (DNA alone).

_ Intensityof OC
~ Intensity of OC + SC

%0C % 100

Determination of superoxide anions

The level of superoxide anions was determined by meas-
urement of cytochrome ¢ reduction assay according to a
previous method [9]. In brief, 10 mM lysine and 10 mM
MG was incubated in the presence or absence of C3R at
concentration 0.125-1 mM. The reduction rate of cycto-
chrome ¢ was measured at room temperature using a
spectrophotometer at 550 nm at 10 min intervals for
50 min. The level of reduced cytochrome ¢ was calcu-
lated based on the extinction coefficient for cytochrome
¢ (e=27,700 M'em™).

Determination of hydroxyl radicals

Thiobarbituric acid reactive substances (TBARS) assay
was used to evaluate the level of hydroxyl radicals ac-
cording to a previously described method [31]. Briefly,
the reaction mixture (0.2 mL total volume) containing
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10 mM lysine, 10 mM MG, and 20 mM 2-deoxy-d-ri-
bose was incubated at 37 °C with or without C3R
(0.125-1 mM). After 3 h, 0.2 mL PBS and 0.2 mL TCA
(2.8 % w/v) was added to the reaction mixture, followed
by 0.2 mL thiobarbituric acid (TBA). The solution was
boiled at 100 °C for 10 min and then cooled to room
temperature. The degradation of 2-deoxy-d-ribose was
measured at a wavelength 532 nm using a spectropho-
tometer. Hydroxyl radicals were expressed as the level of
TBARS which was quantified by using standard curve of
malondialdehyde.

Determination of MG-trapping ability

C3R was incubated with MG at various molar ratios
including 0.25:1, 0.5:1, 1:1, 2:1, 4:1 and 16:1 in 0.1 M
PBS, pH 7.4. AG was used as positive control to in-
cubate with MG at 1:1 molar ratio. The reaction mix-
tures were incubated at 37 °C for 1 and 24 h. After
the incubation, 20 mM o-phenylenediamine (o-PD)
was added to stop the reaction by converting the
remaining MG into 2-methylquinoxaline (2-MQ). The
quantification of MG was based on the determination
of its derivative compound (2-MQ) using HPLC [32].
An Inersil-ODS3V C;g column (150 x 4.6 mm i.d.; 5-
pum particle size) was used along with a LC-10 AD
pump, SPD-10A UV-vis detector and LC-Solution
software (Shimadzu Corp., Kyoto, Japan). The absorb-
ance was recorded at 315 nm and the injection vol-
ume was 10 pL. An isocratic program was performed
with 50 % HPLC grade water and 50 % methanol (v/
v) with a constant flow rate set at 1 mL/min. The
total running time was 14 min and the internal stand-
ard was 0.06 % (v/v) 5-methylquinoxaline (5-MQ) in
methanol. The percentage of MG reduction was cal-
culated using the equation below:

Amountof (MG in control-MG in C3R) 1

%MG trappingability = x 100

Amount of MG in control

Statistical analysis

Data are presented as the arithmetic means + SEM for
each treatment group (n =3). The effect of C3R on the
formation of AGEs, protein oxidation, DNA strand
break and MG-induced generation of hydroxyl radical
was analyzed by one-way ANOVA. The effect of C3R on
MG-induced generation of superoxide anion was deter-
mined by two-way repeated measures ANOVA. The ef-
fect of C3R on MG-trapping ability was determined by a
two-way ANOVA. Differences between treatments were
analyzed by a Tukey post hoc test. These analyses were
performed using SPSS Statistics 17.0 (SPSS Inc., Chi-
cago, IL, USA). A P value of less than 0.05 was taken as
the criterion of significance.
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Fig. 1 The effects of cyanidin-3-rutinoside (C3R) and aminoguanidine (AG) modulating the formation of fluorescent glycated protein in the BSA/
methylglyoxal (MG) assay. The results are presented as mean + SEM (n = 3). Significance is shown in groups that do not share a common letter (p < 0.05)

Results

C3R and the formation of AGEs

The addition of MG to BSA in the BSA/MG assay
caused a 5-fold increase in the formation of fluores-
cent AGEs (Fig. 1). This MG induced glycation of
BSA was reduced when C3R was added at a level of
0.25 mM or above (p<0.05) and the reduction was
greatest when C3R was added at 1 mM (65 %) such
that glycation levels were similar to when no MG was
present. The addition of AG as a positive control
inhibited the formation of fluorescent AGEs by a

C3R and protein oxidation

Incubation of BSA with MG dramatically reduced the
number of thiol groups by 95 %. This reduction in thiol
groups was impaired by C3R at concentrations of
0.125 mM or greater (Fig. 2). At the highest concentration
of C3R (1 mM) tested, there were 33 % more thiol groups
than BSA/MG (p <0.05), an effect that was greater than
that seen when BSA/MG was incubated with AG (1 mM).

C3R and MG-induced DNA strand breakage
The addition of lysine, MG, Cu®*" or C3R to plasmid

similar amount as 1 mM C3R. DNA did not cause DNA cleavage, as plasmid DNA
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Fig. 2 The effects of cyanidin-3-rutinoside (C3R) and aminoguanidine (AG) modulating the level of protein thiol groups in the BSA/methylglyoxal
(MG) assay. The results are presented as mean + SEM (n = 3). Significance is shown in groups that do not share a common letter (p < 0.05)
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remained in the supercoiled (SC) form (Fig. 3a). The
addition of MG and lysine to plasmid DNA increased
strand breakage of plasmid DNA by 69 % by increasing
intensity of the open circular (OC) band (Fig. 3b) and
was reduced by 26 % at the highest dose of C3R (1 mM)
(Fig. 4a). In the presence of Cu**, the cleavage of plas-
mid DNA was 77 % higher than lysine/MG without Cu®
" (Fig. 3c) and was markedly reduced by 12 % and 18 %
at 0.5 and 1 mM of C3R, respectively (Fig. 4b).

C3R and MG-induced generation of superoxide anion and
hydroxyl radicals

MG increased the formation of superoxide anion forma-
tion (as measured by reduced cytochrome c) over the
50 min incubation period which was significantly higher
when MG was incubated with lysine (p < 0.001). The ele-
vation of superoxide anion production caused by lysine/
MG was prevented by all concentrations of C3R
(Fig. 5a).
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Fig. 3 The effects of cyanidin-3-rutinoside (C3R) on DNA cleavage-
mediated by glycation of lysine with methylglyoxal (MG) in the absence
or presence of Cu®*. The major band corresponds to supercoiled form
(SC), and damaged plasmid DNA is represented as opened circular form
(OQ). pUCT9 DNA (0.25 pg) was incubated with the following: a Lane 1,
DNA alone; Lane 2, 50 mM lysine; Lane 3, 50 mM MG; Lane 4, 300 uM
CuSO,4 Lane 5,1 mM C3R. b Lane 1, DNA alone; Lane 2, 50 mM lysine +
50 mM MG; Lane 3, 50 mM lysine + 50 mM MG +0.125 mM C3R; Lane 4,
50 mM lysine 4+ 50 mM MG + 0.25 mM C3R; Lane 5, 50 mM lysine +

50 mM MG + 05 mM C3R; Lane 6, 50 mM lysine + 50 mM MG + 1 mM
C3R. ¢ Lane 1, DNA alone; Lane 2, 50 mM lysine + 50 mM MG + 300 pM
Cu?"; Lane 3, 50 mM lysine + 50 mM MG + 300 pM Cu®* + 0.125 mM
C3R; Lane 4, 50 mM lysine + 50 mM MG + 300 uM Cu”t + 025 mM C3R:
Lane 5, 50 mM lysine + 50 mM MG + 300 pM Cu?* + 05 mM C3R; Lane
6, 50 MM lysine + 50 mM MG + 300 pM Cu”" + 1 mM C3R
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The lysine/MG induced generation of hydroxyl radi-
cals (as measured by TBARS) was reduced when C3R
was added at the level of 0.5 mM or above (Fig. 5b). The
highest concentration of C3R (1 mM) resulted in a 20 %
inhibition of hydroxyl radical generation.

C3R and MG trapping ability

An evaluation of direct MG-trapping capacity was car-
ried out in order to investigate whether C3R could dir-
ectly scavenge MG. The percentage of MG-trapping
efficiency of C3R was consistent with the increased con-
centration of C3R and time of incubation (p <0.001).
The increase in incubation time from 1 to 24 h in-
creased efficiency of C3R to scavenge MG by 2-fold. In
addition, the MG trapping ability of C3R was increased
as the molar ratio of C3R to MG increased. The equal
molar ratio of C3R to MG resulted in 21 % and 45 %
MG-trapping capacity after 1 and 24 h of incubation.
AG showed a higher trapping capacity compared to C3R
as it trapped 90 and 95 % of MG when incubated with
MG (1:1 molar ratio) for 1 and 24 h, respectively
(Table 1).

Discussion
The development of macrovascular and microvascular
diabetic complications is associated with the formation
and accumulation of advanced glycation end products
(AGEs) [33, 34]. There is an important need to identify
approaches that may prevent their formation [35, 36]
and this study shows for the first time that cyanidin-3-
rutinoside (C3R) effectively inhibited dicarbonyl inter-
mediate methylglyoxal (MG)-derived AGEs formation at
an immediate stage of the glycation process. C3R finally
suppressed the formation of fluorescent AGEs and non-
fluorescent AGEs in advanced stage of glycation process.
This inhibitory activity of C3R on protein glycation was
just as effective as aminoguanidine (AG) when highest
dose (1 mM) was provided. These findings extend previ-
ous research which showed that C3R inhibited ribose-,
fructose-, glucose- and galactose-induced AGEs forma-
tion during the initial stage of glycation associated with
the reduction of Amadori product fructosamine [27].
Furthermore, berry and grape extracts containing antho-
cyanin also inhibited the formation of AGEs in an in
vitro model involving fructose, MG and BSA [37]. It is
likely that these protein glycation protective effects of
the fruit extracts may be largely due to C3R content as it
is the predominant anthocyanin component [38, 39].
These findings, taken together, suggest that C3R poten-
tially impairs initiation and intermediate stages of pro-
tein glycation and supports the need for efficacy and
bioavailability studies of C3R in animals and humans.
The effectiveness of C3R in reducing the formation of
AGEs can be explained in part by the effect of C3R on
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scavenging superoxide anion and hydroxyl radicals. In
the current study, we showed that in the presence of ly-
sine and MG, C3R reduced the level of TBARS forma-
tion at concentrations of 0.25 mM or greater and
maintained the reduced form of cytochrome ¢ at back-
ground levels. C3R also prevented the depletion of thiol,
a marker of protein oxidation with higher potency than
AG when provided at an equal concentration (1 mM) in
BSA/MG (1 mM) system. In previous report, the ROS
production during glycation process in BSA/MG system
showed potent to induce DNA strand breakage when
used the higher concentration of MG (20 mM) for 10
and 21 days of incubation [40]. Protein cross-linking

mediated by MG generates free radicals during this reac-
tion including the MG-radical anion and cross-linked rad-
ical cation (MG-protonated cation) [41]. The MG-
protonated cation is a precursor of fluorescent AGEs
while MG-radical anions could donate an electron to oxy-
gen molecule to generate a superoxide anion and hydroxyl
radical [9, 10, 42]. The presence of a transition metal ion
copper could stimulate the Fenton-like reaction to pro-
duce more highly reactive hydroxyl radicals that play an
important role in mechanism of oxidative DNA strand
breakage [11]. The ability of phytochemical com-
pounds on the prevention of MG-induced protein gly-
cation and DNA damage related to free radical
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scavenging activity has been reported [31, 42, 43].
Anthocyanin-rich extract containing high concentra-
tion of C3R also exhibits potent antioxidant activity
[44, 45] and it is suggested that C3R may act as free
radical scavenger to prevent oxidative damage of pro-
tein and DNA. These studies support previous reports
that C3R inhibited the production of a secondary

product of oxidation malonaldehyde from the degrad-
ation of 2-deoxyribose unit in DNA mediated by Fen-
ton’s reagent as well as decreased ROS production
and DNA damage in hydrogen peroxide-simulated
RAW 264.7 murine macrophage cell [46, 47].

The current study demonstrated that C3R was able
to directly trap MG which explains, in part its action

Table 1 The percentage of methylglyoxal (MG)-trapping ability of cyanidin-3-rutinoside (C3R) and aminoguanidine (AG)

Time Molar ratio of C3RMG Molar ration of AGMG
) 0.25:1 0.5:1 11 2:1 41 16:1 1:1

1 5+03 12+13 21+£26 32420 42425 61+19 90+32

24 9+1.2 21+10 45+0.7 57+£30 73+£32 89+ 1.1 95+46

The results are presented as mean + SEM (n=3)
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Fig. 6 A schematic illustration of the effect of cyanidin-3-rutinoside (C3R)
on the formation of methylglyoxal (MG)-induced protein glycation and
oxidative protein and DNA damage. The scavenging of reactive oxygen
species (ROS) and directly trapping of MG may be the major
mechanisms of C3R to protect against protein and DNA damage

in preventing the formation of AGEs and oxidative
protein and DNA damage. The percentage of MG-
trapping ability increased in a concentration dependent
manner and these findings are supported by a previous
study which showed that a purified C3R from blackcur-
rant extract trapped nearly 50 % of MG when it was incu-
bated at a 1:1 ratio. The C3R-mono-MG adduct was
identified as product from the reaction by using liquid
chromatography electrospray ionization mass spectrom-
eter (LC-ESI-MS) [48]. The molecular weight difference
between the adduct (667 m/z) and the original C3R
(595 m/z) is 72 which is same as the molecular weight of
one molecule of MG. It has been reported the addition of
MG on anthocyanin may probably form tautomers with
transformation of carbonyl group of MG to hydroxyl
group [49]. In the previous study, the MG addition reac-
tion reacted with phenolic compounds at carbon atom
with negative electron charge more than —0.24. Therefore,
carbon number 2, 6, 7 and 15 of C3R is the possible loca-
tion for MG addition reaction [48]. Chen et al. demon-
strated the C3R/MG reaction for only 1 h [48] but the
different molar ratio and incubation time between C3R
and MG was evaluated in the current study. The reaction
rate between C3R and MG at 1:1 molar ratio was nearly
2-fold higher when the incubation time was increased
from 1 to 24 h. It suggests that the trapping ability of C3R
is dependent on the concentration and time of incubation.
In addition, flavonoids have also been shown to inhibit
AGEs formation via MG-trapping ability [37, 50-53]
which may be due to their chemical structure that consists
of phenyl ring (A- and B-ring) and heterocyclic ring (C-
ring). The major sites to conjugate with MG are the car-
bon positions at 6 and 8 on the A-ring [51] which is the
same structure present in C3R and may explain their ef-
fectiveness in trapping MG [48].
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Conclusion

C3R inhibited MG-induced protein glycation and
oxidation-dependent damage to bovine serum albumin
and prevented lysine/MG-induced oxidative DNA dam-
age. The inhibitory effect of C3R was attributed in part
to its ability to scavenge ROS and directly trap reactive
dicarbonyl MG (Fig. 6). These observations suggest that
C3R may have anti-glycation potential for preventing
diabetic complications.

Abbreviations

2-MQ, 2-methylquinoxaline; AG, Aminoguanidine; AGEs, Advanced glycation
end products; BSA, Bovine serum albumin; C3R, Cyanidin-3-rutinoside; MG,
Methylglyoxal; ROS, Reactive oxygen species; TBAR, Thiobarbituric acid
reactive substances.

Acknowledgements
We would like to acknowledge the excellent technical assistance provided
by Dr. Weerachat Sompong.

Funding

Thavaree Thilavech was financially supported by RGJ-PhD program (PHD/
0027/2554), the Thailand Research Fund (TRF) and Chulalongkorn University
and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek-
somphot Endowment Fund). This research was supported by Grant for Inter-
national Research Integration: Chula Research Scholar,
Ratchadaphiseksomphot Endowment Fund.

Availability of data and materials
Data are all contained within the paper.

Authors’ contributions

TT was responsible for the study design, experiments, acquisition of data,
analysis and interpretation of data, drafting manuscript and revision. SN was
collaborated for the study and writing concept. DB, MA participated in the
writing concept and drafted manuscript. SA contributed concept of the
study, drafted and revised manuscript. All authors read and approved the
final version of manuscript to be published.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethic approval and consent to participate
Not applicable.

Author details

'Program in Biomedical Sciences, Graduate School, Chulalongkorn University,
Bangkok 10330, Thailand. “Department of Nutrition and Dietetics, Faculty of
Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
3CSIRO Food and Nutrition, Adelaide, SA 5000, Australia.

Received: 31 December 2015 Accepted: 18 May 2016
Published online: 23 May 2016

References

1. Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry,
toxicology and biological implications. Toxicol Lett. 1999;110(3):145-75.

2. Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end
products and oxidative stress in type 2 diabetes mellitus. Biomolecules.
2015;5(1):194-222.

3. Ogawa S, Nakayama K, Nakayama M, Mori T, Matsushima M, Okamura
M, et al. Methylglyoxal is a predictor in type 2 diabetic patients of
intima-media thickening and elevation of blood pressure. Hypertension.
2010;56(3):471-6.



Thilavech et al. BMC Complementary and Alternative Medicine (2016) 16:138

20.

21.

22.

23.
24.

25.

26.

27.

Phillips SA, Mirrlees D, Thornalley PJ. Modification of the glyoxalase system
in streptozotocin-induced diabetic rats. Effect of the aldose reductase
inhibitor Statil. Biochem Pharmacol. 1993;46(5):805-11.

Schalkwijk CG. Vascular AGE-ing by methylglyoxal: the past, the present and
the future. Diabetologia. 2015;58(8):1715-9.

Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and
diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1-14.

An SH, Kang JH. Oxidative damage of DNA induced by the reaction of
methylglyoxal with lysine in the presence of ferritin. BMB Rep.
2013;46(4):225-9.

Argirova M, Breipohl W. Comparison between modifications of lens proteins
resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and
fructose. J Biochem Mol Toxic. 2002;16(3):140-5.

Kang JH. Oxidative damage of DNA induced by methylglyoxal in vitro.
Toxicol Lett. 2003;145(2):181-7.

Suji G, Sivakami S. DNA damage during glycation of lysine by
methylglyoxal: assessment of vitamins in preventing damage. Amino
Acids. 2007;33(4):615-21.

Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA

damage: mechanisms, mutation, and disease. FASEB J.
2003;17(10):1195-214.

Malik Q, Herbert KE. Oxidative and non-oxidative DNA damage and
cardiovascular disease. Free Radic Res. 2012:46(4):554-64.

Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;
361(15):1475-85.

Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts.
Arch Biochem Biophys. 2003;419(1):63-79.

Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K; et al.
Randomized trial of an inhibitor of formation of advanced glycation end
products in diabetic nephropathy. Am J Nephrol. 2004;24(1):32-40.
Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design
and baseline characteristics for the aminoguanidine clinical trial in overt type 2
diabetic nephropathy (ACTION I). Control Clin Trials. 1999;20(5)493-510.

Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N,

et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-
responsive defence against dicarbonyl glycation. Biochem J.
2012,443(1):213-22.

Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS.
Effect of pyridoxamine on chemical modification of proteins by
carbonyls in diabetic rats: characterization of a major product from the
reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys.
2002;402(1):110-9.

Zhu W, Jia Q, Wang Y, Zhang Y, Xia M. The anthocyanin cyanidin-3-O-
beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and
protects hepatocytes against reactive oxygen species during
hyperglycemia: Involvement of a cAMP-PKA-dependent signaling
pathway. Free Radic Biol Med. 2012;52(2):314-27.

Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry
extract ameliorates hyperglycemia and insulin sensitivity via activation
of AMP-activated protein kinase in diabetic mice. J Nutr.
2010;140(3):527-33.

Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and
anti-carcinogenic properties of a novel anthocyanin-rich berry extract
formula. Biochem Mosc. 2004;9(1):75-80.

He J, Giusti MM. Anthocyanins: natural colorants with health-promoting
properties. Annu Rev Food Sci Technol. 2010;1:163-87.

Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr. 2011,2(1):1-7.
Adisakwattana S, Yibchok-Anun S, Charoenlertkul P, Wongsasiripat N.
Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its
synergism with acarbose by inhibition of intestinal alpha-glucosidase. J Clin
Biochem Nutr. 2011:49(1):36-41.

Akkarachiyasit S, Yibchok-Anun S, Wacharasindhu S, Adisakwattana S. In
vitro inhibitory effects of cyandin-3-rutinoside on pancreatic alpha-amylase
and its combined effect with acarbose. Molecules. 2011;16(3):2075-83.
Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, et al. Anti-
hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas
cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory
action. J Agric Food Chem. 2002;50(25):7244-8.

Thilavech T, Ngamukote S, Abeywardena M, Adisakwattana S. Protective
effects of cyanidin-3-rutinoside against monosaccharides-induced protein
glycation and oxidation. Int J Biol Macromol. 2015;75:515-20.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

Page 9 of 10

Elhabiri M, Figueiredo P, Fougerousse A, Brouillard R. A convenient method for
conversion of flavonols into anthocyanins. Tetrahedron Lett. 1995;36(26):4611-4.
Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic Acid, a new
anti-glycation agent, inhibits fructose- and glucose-mediated protein
glycation in vitro. Molecules. 2013;18(6):6439-54.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-7.
Chan WH, Wu HJ. Protective effects of curcumin on methylglyoxal-induced
oxidative DNA damage and cell injury in human mononuclear cells. Acta
Pharmacol Sin. 2006;27(9):1192-8.

Peng X, Zheng Z, Cheng K-W, Shan F, Ren G-X, Chen F, et al. Inhibitory effect of
mung bean extract and its constituents vitexin and isovitexin on the formation of
advanced glycation endproducts. Food Chem. 2008,106(2):475-81.

Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end
products: sparking the development of diabetic vascular injury. Circulation.
2006;114(6):597-605.

Jakus V, Rietbrock N. Advanced glycation end-products and the progress of
diabetic vascular complications. Physiol Res. 2004;53(2):131-42.

Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs)
and diabetic vascular complications. Curr Diabetes Rev. 2005;1(1):93-106.

Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation
endproduct formation by foodstuffs. Food Funct. 2011;2(5):224-34.

Wang W, Yagiz Y, Buran TJ, Nunes CN, Gu L. Phytochemicals from
berries and grapes inhibited the formation of advanced glycation
end-products by scavenging reactive carbonyls. Food Res Int.
2011,44(9):2666-73.

Hassimotto NM, Genovese MI, Lajolo FM. Absorption and metabolism of
cyanidin-3-glucoside and cyanidin-3-rutinoside extracted from wild
mulberry (Morus nigra L) in rats. Nutr Res. 2008;28(3):198-207.

Jakobek L, Seruga M, Medvidovi¢-Kosanovi¢ M, Jovanovi¢ IN. Anthocyanin
content and antioxidant activity of various red fruit juices. Dtsch Lebensmitt
Rundsch. 2007;103(2):58-64.

Ali A, Sharma R. Acomparative study on the role of lysine and BSA in
glycation-induced damage to DNA. Biosci Bioeng Commun. 2015;1:38-43.
Yim HS, Kang SO, Hah YC, Chock PB, Yim MB. Free radicals generated during
the glycation reaction of amino acids by methylglyoxal. A model study of
protein-cross-linked free radicals. J Biol Chem. 1995;270(47):28228-33.

Wu CH, Yen GC. Inhibitory effect of naturally occurring flavonoids on the
formation of advanced glycation endproducts. J Agric Food Chem. 2005;
53(8):3167-73.

Meeprom A, Sompong W, Suantawee T, Thilavech T, Chan CB,
Adisakwattana S. Isoferulic acid prevents methylglyoxal-induced protein
glycation and DNA damage by free radical scavenging activity. BMC
Complement Altern Med. 2015;15(1):34.

Li W, Liang H, Zhang MW, Zhang RF, Deng YY, Wei ZC, et al. Phenolic
profiles and antioxidant activity of litchi (Litchi Chinensis Sonn.) fruit
pericarp from different commercially available cultivars. Molecules. 2012;
17(12):14954-67.

Beaulieu LP, Harris CS, Saleem A, Cuerrier A, Haddad PS, Martineau LC, et al.
Inhibitory effect of the Cree traditional medicine wiishichimanaanh
(Vaccinium vitis-idaea) on advanced glycation endproduct formation:
identification of active principles. Phytother Res. 2010;24(5):741-7.

Jung H, Kwak H-K, Hwang K. Antioxidant and antiinflammatory activities of
cyanidin-3-glucoside and cyanidin-3-rutinoside in hydrogen peroxide and
lipopolysaccharide-treated RAW264.7 cells. Food Sci Biotechnol. 2014;23(6):
2053-62.

Matsufuji H, Ochi H, Shibamoto T. Formation and inhibition of genotoxic
malonaldehyde from DNA oxidation controlled with EDTA. Food Chem
Toxicol. 2006;44(2):236-41.

Chen X-Y, Huang IM, Hwang LS, Ho C-T, Li S, Lo C-Y. Anthocyanins in
blackcurrant effectively prevent the formation of advanced glycation end
products by trapping methylglyoxal. J Funct Foods. 2014;8:259-68.

Lv L, Shao X, Wang L, Huang D, Ho CT, Sang S. Stilbene glucoside from
Polygonum multiflorum thunb.: A novel natural inhibitor of advanced
glycation end product formation by trapping of methylglyoxal. J Agric Food
Chem. 2010;58(4):2239-45.

Hu TY, Liu CL, Chyau CC, Hu ML. Trapping of methylglyoxal by curcumin in
cell-free systems and in human umbilical vein endothelial cells. J Agric Food
Chem. 2012;60(33):8190-6.

Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end
product formation by trapping methylglyoxal and glyoxal. J Agric Food
Chem. 2014,62(50):12152-8.



Thilavech et al. BMC Complementary and Alternative Medicine (2016) 16:138

52.

53.

Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. Cinnamon bark
proanthocyanidins as reactive carbonyl scavengers to prevent the
formation of advanced glycation endproducts. J Agric Food Chem.
2008;56(6):1907-11.

Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol
(-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl
species. Chem Res Toxicol. 2007,20(12):1862-70.

Page 10 of 10

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit ( BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Chemicals and Reagents
	Bovine serum albumin (BSA)-methylglyoxal assay
	Determination of thiol group content
	Analysis of DNA strand breaks
	Determination of superoxide anions
	Determination of hydroxyl radicals
	Determination of MG-trapping ability
	Statistical analysis

	Results
	C3R and the formation of AGEs
	C3R and protein oxidation
	C3R and MG-induced DNA strand breakage
	C3R and MG-induced generation of superoxide anion and hydroxyl radicals
	C3R and MG trapping ability

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethic approval and consent to participate
	Author details
	References

