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Abstract

Background: Lawsonia inermis (Lythraceae) is an ethnomedicinal plant, traditionally known for curing several ailments
such as skin diseases, bacterial infections, jaundice, renal lithiases and inflammation etc. The present work deals with
assessment of in vitro antioxidant and in vivo hepatoprotective potential of butanolic fraction (But-LI) of Lawsonia

inermis L. leaves.

Methods: Antioxidant activity was evaluated using deoxyribose degradation, lipid peroxidation inhibition and ferric
reducing antioxidant power (FRAP) assay. In vivo protective potential of But-LI was assessed at 3 doses [100, 200 &
400 mg/kg body weight (bw)] against 2-acetylaminofluorene (2-AAF) induced hepatic damage in male Wistar rats.

Results: But-LI effectively scavenged hydroxy! radicals in deoxyribose degradation assay (ICso 149.12 pg/ml). Fraction
also inhibited lipid peroxidation and demonstrated appreciable reducing potential in FRAP assay. Treatment of animals
with 2-AAF resulted in increased hepatic parameters such as SGOT (2.22 fold), SGPT (1.72 fold), ALP (5.68 fold) and lipid
peroxidation (2.94 fold). Different concentration of But-LI demonstrated pronounced protective effects via decreasing
levels of SGOT, SGPT, ALP and lipid peroxidation altered by 2-AAF treatment. But-LI administration also restored the
normal liver architecture as evident from histopathological studies.

Conclusions: The present experimental findings revealed that phytoconstituents of Lawsonia inermis L. possess
potential to effectively protect rats from the 2-AAF induced hepatic damage in vivo possibly by inhibition of reactive

oxygen species and lipid peroxidation.
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Background

Mutations resulting spontaneously or from environmental
exposure may lead to cancer [1]. Chemical bonds in DNA
molecule abide same laws likewise other chemicals exist-
ing at 37 °C in aqueous environment of cell. Likewise
other molecules, existence of DNA also depends upon for-
mation and breaking of bonds. So, it is not astonishing
that DNA regularly endures various kinds of chemical
damages due to spontaneous thermal effects and as result
of attack of other reactive molecules [2]. Various physical
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and chemical agents (exogenous agents) causes damage
to DNA, many of them are now documented as envir-
onmental carcinogens [2, 3]. Studies have shown that
chemicals play an important role in the etiology of sev-
eral kinds of human cancers [4, 5]. It is well-known that
exposure to various hazardous chemicals occurs at very
low doses, extends through longer time period of life
and influence great part of population [6]. Tumor
induction in workers exposed to coal tar in 1775 was
the earliest known instance of environmental carcino-
genesis documented. This very example of environmen-
tal carcinogenesis, later led to identification of various
polycyclic hydrocarbons in coal tar. This also led to the
finding of polycyclic hydrocarbons as skin carcinogens
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in laboratory animals. Other example was bladder
carcinogenesis incidence among the workers working
in the rubber and chemical industries. This led to the
recognition of 2-naphthylamine as bladder carcinogen
[2]. With advancement in the science, it is now well
known that some of cancers are environmental in
origin and can be related directly to different chemical ex-
posures [7]. Humans are constantly exposed to plethora of
xenobiotic chemicals and other related environmental
pollutants which are hazardous to the health [8].

Liver is the main seat of xenobiotic metabolism and
also carries out various functions in biotransformation
including amino acid metabolism, lipid metabolism etc.
[9-12]. Liver cancer is one of the most common malig-
nancies occurring all over the world particularly in Asian
and African countries [13]. Various risk factors linked
with liver cancer are alcohol, food additives, aflatoxins,
toxic chemicals from industries, pollutants etc. [14, 15].
More than 600 chemicals have been identified which
can cause liver injury [16, 17]. 2-acetylaminofluorene
(2-AAF) is one of the most studied chemical as
model hepatocarcinogen. It was initially made as an
insecticide, however its use was stopped because of
its carcinogenic nature. It is an aromatic compound
having solubility in organic solvents and remains
insoluble in water [18-21]. 2-AAF induces its carcino-
genic effects through metabolic activation via the mixed
function oxidase system. Activation of 2-AAF leads to the
formation of reactive electrophilic forms which react to
form DNA adducts [22-24].

Nowadays, use of herbal medicines for curing variety
of ailments is gaining popularity including liver diseases
[25]. Number of reports are available in the literature
which have shown hepatoprotective effects of natural
plant products against various genotoxins, carcinogens
and toxic substances including carbon tetrachloride
(CCly), paracetamol, 2-acetylaminofluorene (2-AAF),
7, 12-dimethylbenz(a)anthracene (DMBA), thioacetamide
etc. [26-34]. Lawsonia inermis L. (L. inermis) commonly
known as Henna or Mehandi belongs to family Lythra-
ceae. Traditionally, the plant is known for its medicinal
properties for the cure of renal lithiases, jaundice, to heal
wounds, prevent skin inflammation etc. [35-38]. It is
also used by some Nigerian tribes as a therapy against
poliomyelitis and measles [39]. L. inermis was
reported to contain various phytoconstituents such as
chlorogenic acid, ferulic acid, isoferulic acid, gallic
acid, o-coumaric acid, m-coumaric acid, myricetin,
naringenin-7-o-rutinoside, = quercetin, (+)-catechin,
(-)-catechin gallate, (-)-epicatechin gallate, vitexin-2'-
o-rhamnoside etc. [40]. Hsouna et al. [41] reported phyto-
constituents viz. lawsoniaside, lalioside, luteolin-7- O-
-D-glucopyranoside, 2,4,6-trihydroxyacetophenone-2-O-
B-D-glucopyranoside,  1,2,4-trihydroxynaphthalene-1-
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O-B-D-glucopyranoside from L. inermis leaves. L. inermis
showed numerous medicinal properties viz. antimuta-
genic, anticlastogenic, analgesic, anti-inflammatory, anti-
pyretic activities etc. [42—44]. Phytoconstituents from L.
inermis leaves were reported to possess immunomodula-
tory activity [45]. Kaur et al. [46] carried out toxicity
studies on ethanolic extract of L. inermis leaves using
albino Wistar rats and reported that administration of
rats with 80% ethanolic extract posed no toxicity in the
tissues of the organs up to dose of 500 mg/kg bw. An-
other study by Alferah [47] reported that administration
of L. inermis leaf solution (200 mg/kg/day) to the rats for
42 days did not induce any toxicity in liver, kidney and
spleen tissue sections. Selvanayaki and Ananthi [48]
reported hepatoprotective effects of aqueous extract of L.
inermis against paracetamol induced hepatic damage in
male Albino rats. Hossain et al. [49] studied hepato-
protective activity of L. inermis leaves against carbon
tetrachloride induced liver damage in Wistar albino
rats. Dasgupta et al. [50] reported anticarcinogenic
activity of Henna leaves against benzo(a)pyrene
induced forestomach as well as against 7,12 dimethyl-
benz(a)anthracene (DMBA)-initiated and croton oil-
promoted skin papillomagenesis. In our previous reports
[51, 52], we reported extract/fractions of L. inermis
with antioxidant, antiproliferative and apoptosis indu-
cing activity. Since But-LI fraction was found to
exhibit high antioxidant activity and is rich in various
polyphenolic phytoconstituents viz. gallic acid, catechin,
chlorogenic acid, ellagic acid, kaempferol etc. [51], so we
planned to investigate But-LI fraction from Lawsonia iner-
mis L. for modulatory effects against the toxicity induced
by 2-acetylaminofluorene (2-AAF) in male Wistar rats by
assessing various serum and liver tissue parameters.

Methods

Chemicals

2,4,6-tripyridyl-s-triazine (TPTZ), Malondialdehyde (MDA),
Deoxyribose, 2-acetylaminofluorene (2-AAF) were
purchased from Sigma Chemical Co. (St Louis, MO,
USA). Ascorbic acid and Sodium dodecyl sulfate
(SDS) were purchased from Hi-Media, Mumbai, India.
All other chemicals used in the present experimental
study were of AR grade.

Collection of plant material and preparation of But-LI
fraction

The plant material was purchased from local market
(Majeeth mandi, Amritsar), identified and authenticated
by Dr. A. S. Soodan, Assoc. Prof., Department of Botanical
and Environmental Sciences, Guru Nanak Dev University,
Anmritsar. The voucher specimen (no. 6773) has been kept
in the Herbarium of the Department. Leaves were washed
to ensure that they become free from any kind of dirt as
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well as other foreign particles and dried in shade. Leaves
(3 kg) were grounded to fine powder and extracted at
room temperature to obtain butanolic fraction (But-LI) as
described in Kumar et al. [51].

In vitro antioxidant assays
Deoxyribose degradation assay
Deoxyribose degradation assay was carried out by the
method of Halliwell et al. [53] and Arouma et al. [54]
with slight modifications. In this assay, EDTA (1 mM),
FeCl; (10 mM), hydrogen peroxide (10 mM), 2-deoxyri-
bose (10 mM), test sample (1 ml), phosphate buffer and
Ascorbic acid (1 mM) were mixed in the test tubes and
the contents of reaction mixture were incubated at 37 °C
for 1 h. After incubation, 1 ml of above mixture was taken
and mixed with 1 ml of 2-thiobarbituric acid (TBA) and
tricholoacetic acid (TCA) each. Finally reaction mixture
was heated at 80 °C on water bath for 1.5 h. Final absorb-
ance of the pink chromogen formed was taken spectro-
photometrically at 532 nm using Elisa reader. Rutin was
used as antioxidant standard.

Percent hydroxyl radical scavenging potential was
calculated by formula as given below:

Radical scavenging activity (%) = Ao — A1/Ag x 100

where,

Ay is the absorbance of reaction mixture + vehicle
solvent,

A, is the absorbance of reaction mixture + test sample.

Lipid peroxidation inhibition assay
A modified thiobarbituric acid reactive species (TBARS)
assay [55] was performed to determine the lipid peroxides
produced using egg yolk homogenate as lipid rich media
[56]. Various concentrations of test sample were added to
the test tubes containing egg homogenate (0.5 ml of
10% v/v). About 50 pl of FeSO, solution was added to the
test tubes to induce lipid peroxidation and incubated test
tubes at 37 °C for 30 min. After % hour, 20% acetic acid
(pH 3.5), 0.8% of TBA in 1.1% SDS and TCA (20%) were
added. All the contents of the tubes were mixed properly
and heated at 95 °C for 1 h. After heating, test tubes were
cooled, followed by addition of 5 ml of butanol and centri-
fuged at 1036 x g for 10 min. The absorbance was taken at
532 nm (Systronics 2202 UV-Vis Spectrophotometer).
Trolox was used as antioxidant standard.

Inhibition of lipid peroxidation (%) was calculated
using the formula as given below:

Radical scavenging activity (%) = (1-E/C) x 100
where,

C is the absorbance of fully oxidized control,

E is the absorbance in the presence of test sample.
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Ferric reducing antioxidant power (FRAP) assay

FRAP assay was carried out by the method of Benzie
and Strain [57]. FRAP reagent was prepared by mixing
acetate buffer, TPTZ solution and FeCl;.6H,O solution
in the ratio of 10:1:1. About 3 ml of FRAP reagent was
dispensed into the test tubes followed by addition of
300 pl of test sample. Test tubes were shaken to mix the
content well and incubated at 37 °C for 10 min. Absorb-
ance of the reaction mixture was taken at 593 nm
(Systronics 2202 UV-Vis Spectrophotometer, India).
Trolox was used as standard antioxidant. Increase in the
absorbance of the reaction mixture as compared to
control is considered as increase in the reducing poten-
tial of test sample.

In vivo hepatoprotective activity

Experimental animals

All the in vivo work was done as per the guidelines of
Committee for the Purpose of Control and Supervision
of Experiments on Animals (CPCSEA), Ministry of
Environment and Forests, Government of India for
housing and experimentation on animals and the study
was approved by the Institutional Animal Ethics
Committee of Guru Nanak Dev University, Amritsar
(226/CPCSEA/2014/08). Male Wistar rats weighing
240-280 g were used in this study and were procured
from the animal house facility of Indian Institute of
Integrative medicine (IIIM), Jammu (India). After the
procurement, rats were kept in the polypropylene cages
provided with paddy husk bedding. The temperature
was maintained at 25 + 2 °C along with a 12 h light and
12 h dark cycle in the animal house of Guru Nanak Dev
University, Amritsar (Punjab). All the animals were fed
on standard pellet diet and water ad libitum and allowed
to acclimatize for two weeks before the start of
experimentation.

Experimental design

2-acetylaminofluorene (2-AAF) induced hepatic damage
model was used to evaluate hepatotoxicity [58]. The ani-
mals were randomly divided into seven groups (Fig. 1),
each containing four rats (n=4). The experimental
protocol was of total 15 days time period. Group I
served as control group put on standard pellet diet.
Group II served as vehicle control and animals received
distilled water via oral route (1st to 15th day) and corn
oil injection intraperitoneally (i.p.) from 11th to 15th
day. Group III served as positive control group was
treated with 2-acetylaminofluorene (2-AAF) (50 mg/kg
bw; i.p.) for 5 consecutive days (11th to 15th day). Group
IV (Negative control) was treated with highest dose of
plant extract alone (But-LI; 400 mg/kg bw) from day 1st
to 15th, Group V to VII were given 3 doses of plant ex-
tract (100, 200 and 400 mg/kg bw from day 1st to 15th)
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Treatment Regimen (1-15 days)

Grolp 1

(Vehicle control;
Distilled water 1%
to 15t day and
corn oil i.p; 11" to
15% day )

Group IV

v
Group I
(Control)

Gro‘ 'p I
(Positive control;
2-AAF; 50mg/kg

bw; 11t to 15" day )

Fig. 1 Diagrammatic representation of treatment schedule

(Negative control;
But-LI; 400mg/kg
bw; 1 to 15t day )

Grzlzlp v
(But-LI; 100mg/kg bw;
1% to 15* day + 2-AAF;

50mg/kg bw;
11t to 15 day)

Group VI
(But-LI; 200mg/kg bw;
1t to 15 day + 2-AAF;
50mg/kg bw; 11t to 15t

day)

v
Group VII
(But-LI; 400mg/kg bw;
1th to 15t day + 2-AAF;
50mg/kg bw; 11t to 15®
day)

and toxicant 2-AAF (50 mg/kg bw; intraperitoneally
from day 11th to 15th).

Preparation of liver homogenate

After completion of treatment period, all the rats were
euthanized by cervical dislocation. Livers of the animals
were perfused immediately in ice cold solution of 0.9%
NaCl. Livers were then made free from other kind of
tissues and rinsed in chilled buffer (0.15 M KCI+
10 mM Tris-HCI, pH 7.4). After that livers were
weighed immediately and finally homogenized in ice-
cold Tris-KCl buffer to yield 10% (w/v) homogenate
using homogenizer.

Biochemical analysis

Serum parameters

Blood samples were taken using retro-orbital puncture
after anesthetizing the rats. Briefly, blood was allowed to
stand for sometime followed by centrifugation at
2400 rpm for 20 min. Clear supernatant so obtained was
designated as serum. Various serum parameters viz.
Serum glutamate oxaloacetate transaminase (SGOT),
Serum glutamate pyruvate transaminase (SGPT) and
Serum alkaline phosphatase (ALP) were measured on
Autoanalyzer (Erba Mannheim XL-640) using kits (Erba
Mannheim XL System Packs).

Determination of lipid peroxidation

Lipid peroxidation was determined in terms of the for-
mation of thiobarbituric acid reactive species (TBARS)
[59]. In order to measure TBARS, liver homogenate
(0.5 ml) was added to the TBA reagent (20% TCA, 0.5%
TBA, and 0.25 N HCI) in the test tubes. The contents of
test tubes were mixed properly and heated at 80 °C for
30 min. After the incubation, test tubes were cooled to
room temperature and final absorbance was taken at

532 and 600 nm. The amount of TBARS was expressed
as MDA content (u mol MDA eq/g of tissue) from the
calibration curve obtained using malondialdehyde (MDA)
as standard compound.

Histopathological studies

For histopathological studies, liver tissues were fixed in
10% formalin solution. After that tissues were processed
by routine histology method and finally embedded in
paraffin wax. Tissue sections were then stained with
haematoxylin and eosin stains. After the preparation of
slides, the sections were studied for histopathological
alterations under microscope equipped with camera.
Coded histological samples of liver were scored for
necroinflammatory score using the Ishak modified histo-
logical index grading [60].

Statistical analysis

The results were expressed as the average and standard
error/standard deviation. ICg, values were calculated
using regression equation. The data was analyzed for
statistical significance using analysis of variance (One-
way ANOVA) and the difference among means was
compared by HSD using Tukey’s test. The significance
of results was checked at *p < 0.05.

Results

In vitro antioxidant activity

In deoxyribose degradation assay, But-LI showed potent
hydroxyl radical scavenging activity with percent
inhibition of 31.81 at lowest tested concentration and
79.86% at highest tested concentration (Fig. 2). IC5q of
149.12 pg/ml was obtained from regression equation
showed that fraction was more potent than standard
rutin (ICsy 203.56 pg/ml). In lipid peroxidation inhib-
ition assay, it showed moderate inhibition of 58.90% at
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Fig. 2 Hydroxyl radical scavenging activity of But-LI from Lawsonia
inermis leaves in Deoxyribose degradation assay. ***represents
significance at p £ 0.001

highest concentration and 39.33% at lowest concentra-
tion. But-LI showed higher ICs4 (375.73 pg/ml) than that
of standard trolox (ICso 136.47 pg/ml) (Fig. 3). But-LI
displayed an absorbance of 0.72 nm in FRAP assay at
highest tested concentration (Fig. 4). Standard com-
pound trolox showed an increase in an absorbance of
reaction mixture with 2.95 nm at same concentration
(200 pg/ml). Results were dose-dependent as there was
increase in absorbance with increase in the concentra-
tion of But-LI.

In vivo hepatoprotective activity

Serum parameters

There was significant increase in the various serum
toxicity markers viz. SGOT, SGPT and ALP on treat-
ment with 2-AAF (Table 1). However, the vehicle control
group and negative control group (But-LI treated)

100 - y = 8.548In(x) - 0.680
r=0.9904**
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T 40
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Fig. 3 Lipid peroxidation inhibitory activity of But-LI from Lawsonia
inermis leaves in Lipid peroxidation inhibition assay. **represents
significance at p < 0.01
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Fig. 4 Reducing potential of But-LI from Lawsonia inermis leaves in
FRAP assay. ***represents significance at p < 0.001

showed values which were not statistical different to
the normal control group at p <0.05. The three different
concentrations viz. 100 mg/kg, 200 mg/kg and 400 mg/kg
bw of But-LI exhibited decrease in the values of these
toxicity markers as compared to the toxicant i.e. 2-AAF
treated group (Table 1).

Determination of lipid peroxidation

Normal control group (I), vehicle control group (II) and
negative control group (IV) showed TBARS value of
17.69, 15.87 and 14.15 p mol MDA eq/g of tissue
(Table 2). On the other hand, 2-AAF treated group (III)
showed significant rise in the content of TBARS value of
52.07 p mol MDA eq/g of tissue. 2-AAF and But-LI
co-treated groups (V, VI & VII) showed dose dependent
decrease in the TBARS values in comparison to 2-AAF
treated group with value of 12.50 p mol MDA eq/g of
tissue at the highest concentration of 400 mg/kg bw
(group VII) (Table 2).

Histopathological studies

Results showed that there was no damage to the liver in
the normal control group (I), vehicle control group (II)
and negative control group (IV) as the necroinflammatory
score of these groups was zero. On the hand, histo-
pathology examination of group III administered with
2-acetylaminofluorene (2-AAF) showed severe damage
in the liver tissue with necroinflammatory score of 6/18.
Group V, VI and VII administered with 100, 200 and
400 mg/kg bw of But-LI from L. inermis along with 2-
AAF showed noticeable protection against 2-AAF induced
liver damage. The necroinflammatory score was found to
be 1 at the highest tested concentration of But-LI (VII;
400 mg/kg bw) pointing towards its protective effects
(Table 3 & Fig. 5). Histopathological results revealed the
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Table 1 Effect of various treatments on hepatic parameters of male Wistar rats

S. No. Group SGOT SGPT ALP
(/) un) ()
1. Group | (Control) °114.00+11.284 %4125+7.632 945,00 + 8.286
2. Group Il (Vehicle Control) 213825 + 6.652 24100+ 1414 34975+ 12,038
3. Group Il [(Positive control; 2-AAF (50 mg/kg body weight)] b253.25 +30.912 b71.00+ 10,801 £256.00 + 44,631
4, Group IV (But-LI, 400 mg/kg body weight) 4121.50 £ 15.154 94050 + 6.855 4475 £ 8616
5, Group V (2-AAF+ But-Ll, 100 mg/kg body weight) °13850 + 10472 24375 +5909 4625 + 9464
6. Group VI (2-AAF+ But-LI, 200 mg/kg body weight) 4129.25+10.242 44900 +9.931 938.75 + 4.500
7. Group VI (2-AAF+ But-LI, 400 mg/kg body weight) 11850+ 11618 23800+ 10424 231,00 + 6,055
F-ratio (6, 21) 39.02% 7.80% 7551%
HSD 3591 1876 4282

Means within the column followed by different superscripts letters are significantly different at *p < 0.05. Values expressed as Mean + SD

protective potential of But-LI and support the results ob-
tained from the serum and lipid peroxidation parameters.

Discussion

Plant kingdom is regarded as gold repository of natural anti-
oxidant constituents that can delay or prevent oxidation of
other substances when ingested in daily diet [61]. During the
last decade, bioprospection of phytoconstituents with nutri-
tional and pharmaceutical importance is gaining popularity
[62]. Numerous literature reports have demonstrated that
medicinal plant extracts possess antioxidant and genoprotec-
tive activity [63—67]. Crude extracts or isolated molecules
from medicinal plants not only possess antioxidant potential
but they are even more potent than BHT, Vitamin E etc. in
various in vitro experiments [68—70]. Mitochondrion is chief
source of reactive oxygen species like superoxide anions
(Oy"). Dismutation of superoxide anions radicals by super-
oxide dismutase enzyme leads to the formation of hydro-
gen peroxide (H,O,). Hydrogen peroxide undergoes
interaction with transition metal ions viz. Fe>* or Cu* to

Table 2 Effect of various treatments on lipid peroxidation status
of male Wistar rats

S.No. Group Lipid peroxidation
(1 mol MDA eq/g
of tissue)

1. Group | (Control) 217.69+ 3460

2. Group Il (Vehicle Control) #15.87 +3.591

3. Group Il [(Positive control; 2-AAF P52.07 + 15446

(50 mg/kg body weight)]

4. Group IV (But-LI, 400 mg/kg body weight) 914.15+5023

5. Group V (2-AAF+ But-LI, 100 mg/kg body weight) #2270 + 7.347

6. Group VI (2-AAF+ But-LI, 200 mg/kg body weight) #1633 +3.967

7. Group VI (2-AAF+ But-L1, 400 mg/kg body weight) #1250 +1.830

F-ratio (6, 21) 14.753*
HSD 16.534

Means within the column followed by different superscripts letters are
significantly different at *p < 0.05. Values expressed as Mean + SD

generate hydroxyl radicals (OH’). Hydroxyl radicals (OH))
cause number of harmful activities such as initiating lipid
peroxidation and causing alterations in DNA [71]. But-LI
showed statistically significant dose-dependent hydroxyl
radical scavenging potential of 79.86% at highest tested
concentration. Analysis of one way ANOVA showed
F-ratio of 50.29 which was found to be statistically
significant at p <0.05. Regression analysis showed re-
gression equation of y=16.71In(x)-33.63; r=0.9969).
The value of correlation coefficient was found to be
significant at p <0.001. Since the fraction contained
numerous polyphenolic constituents in appreciable
amount as reported in our earlier publication [51],
the hydroxyl radical scavenging activity of the fraction
might be attributed to these compounds. Similar re-
sults were reported by Thind et al. [72] who investigated
root extracts of Schleichera oleosa for antioxidant activity
using deoxyribose degradation assay and reported extracts
as good hydroxyl radical scavengers. Kaur and Arora [73]
evaluated antiradical potential of methanol extract of
Chukrasia tabularis leaves using deoxyribose degradation
assay and reported that extract possessed promising
hydroxyl radical scavenging activity in deoxyribose deg-
radation assay.

Reactive oxygen species are mainly generated in the
mitochondria as byproduct of cellular metabolic pro-
cesses and can affect biomolecules by causing damage
[74]. Reactive intermediates resulting from oxidative
stress can target membrane bilayers by causing lipid per-
oxidation. Polyunsaturated fatty acids in the membranes
undergo lipid peroxidation resulting in lipoperoxyl rad-
ical (LOO") generation, which attack lipids to form lipid
hydroperoxides (LOOH) and lipid radicals. Lipid hydro-
peroxides are known to be unstable and can give rise to
peroxyl and alkoxyl radicals and decompose to produce
various secondary products. The breakdown products of
lipid peroxides include malondialdehyde, hexanal, 4-
hydroxynonenal etc. which are highly reactive [75-78].
4-hydroxynonenal is of electrophilic nature and reacts
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S. No. Group Periportal or Confluent necrosis Focal (spotty) lytic Portal inflammat-ion Total score
interface hepatitis necrosis, apoptotic
(Piecemeal necrosis) and focal inflammation

1. Group | 0 0 0 0 0/18

2. Group |l 0 0 0 0 0/18

3. Group Il 2 1 1 2 6/18

4. Group IV 0 0 0 0 0/18

5. Group V 1 0 1 1 3/18

6. Group VI 0 0 0 1 1/18

7. Group VII 1 0 0 0 1/18

with glutathione, proteins and also with DNA at higher
concentration [79, 80]. In the present investigation, it
was found that But-LI moderately inhibited the lipid
peroxidation dose dependently (y = 8.548In(x)-0.680;
r=0.9904). The value of correlation coefficient was

found to be significant at p <0.01. Earlier, we have
reported that But-LI fraction harbours high amount
of catechin, chlorogenic acid, ellagic acid and kaempferol
while phytoconstituents such as gallic acid, epicatechin
and quercetin were found to be present in moderate

<
LAL8 &
Group VII
Fig. 5 Histopathological examination of liver sections of rats belonging to different groups. Group | (Control); Group Il (Vehicle control); Group il [(Positive
control; 2-AAF (50 mg/kg bw)l; Group IV (But-LI, 400 mg/kg bw); Group V (2-AAF+ But-LI, 100 mg/kg bw); Group VIl (2-AAF+ But-LI, 400 mg/kg bw)
. J
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amount [51]. The lipid peroxidation inhibitory activity of
the fraction might be due to various polyphenolic
constituents present in it. Nakchat et al. [81] studied
antioxidant activity including anti-lipid peroxidation
activity of boiling water Tamarind seed coat extract
and reported that extract effectively inhibited the lipid
peroxidation. HPLC analysis of Tamarind seed coat
extract showed presence of phenolics constitiuents such
as (+)-catechin, (-)-epicatechin and procyanidin B2 which
may be resposnsible for its antioxidant activities. Mulla
and Swamy [82] studied antioxidant activity of poly-
phenolic extract of Portulaca quadrifida and reported that
extract showed antilipid peroxidation activity of 71% with
ICs value of 370.33 + 291 pg/ml. Results of FRAP assay
revealed that But-LI fraction also possessed dose-
dependent reducing potential. Analysis of results using
one way ANOVA showed F-ratio of 49.94 which was
found to be statistically significant at p <0.05. Regression
analysis showed regression equation of y = 0.003x-0.007;
r=0.9979. The value of correlation coefficient was found
to be significant at p < 0.001. Reducing ability of the frac-
tion may be due to polyphenols present in it. Singh et al.
[83] studied leaf, fruit and seed extract of Moringa oleifera
for antioxidant activity and reported that leaf extract pos-
sessed good reducing potential in reducing power assay.
HPLC analysis of the extract demonstrated the presence
of phenolic constituents such as gallic acid, chlorogenic
acid, kaempferol, quercetin, ellagic acid, ferulic acid, and
vanillin. Soobrattee et al. [84] studied various polphenolic
phytochemicals for reducing potential in FRAP assay.
Gallic acid, ellagic acid, chlorogenic acid, quercetin,
kaempferol, (-)-epicatechin and (+)-catechin exhibited
FRAP value of 5.25, 4.39, 3.22, 7.39, 1.95, 2.90 and
2.47 mmol Fe (II)/L respectively.

Several plant extracts and phytochemicals are reported
to modulate the mammalian antioxidant enzymes system
and provide protective effects against cellular damage
[85-88]. Liver is the main organ responsible for detoxifi-
cation processes occurring in the body. In the liver cells,
endoplasmic reticulum is the primary site of metabolism.
Hence, this metabolism is termed as hepatic metabolism.
Besides liver, there are extrahepatic sites of metabolism
which include organs such as lungs, kidney, skin, epithe-
lial cells of gastrointestinal tract, adrenals and placenta
[89-92]. Liver injury in response to various chemicals
results in the leakage of serum enzymes into the blood
circulation, thus causing increase in their level in the
serum [93]. Sehrawat et al. [94] reported that 2-AAF
administration to rats increased the level of SGOT and
SGPT enzymes in serum. In another study, Hasan and
Sultana [34] reported that 2-AAF treated rats demon-
strated high level of serum aspartate aminotransferase
(AST) and alanine aminotransferase (ALT). In the present
investigation results obtained from serum toxicity markers
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such as SGOT, SGPT, ALP demonstrated significant
increase on treatment with 2-AAF as compared to normal
control. 2-AAF induced 2.22, 1.72 and 5.68 fold enhance-
ments in SGOT, SGPT and ALP levels respectively. On
co-administration of rats with 2-AAF and varying doses of
But-LI, there was significant decrease in these serum
parameters and the serum enzymes levels were restored
towards normal control levels. The But-LI fraction alone
did not induce any increase in the values of these markers
and results were statistically not different to the normal
control and vehicle control group at p <0.05, reflecting
non-toxic nature of But-LI fraction.

A study carried out by Selvanayaki and Ananthi [48]
reported aqueous extract of Lawsonia inermis seeds with
potent hepatoprotective effects against paracetamol in-
duced hepatic damage in male rats. Extract significantly
reduced the levels of various serum enzymes viz. aspar-
tate aminotransferase (AST), acid phosphatase (ACP),
alkaline aminotransferase (ALT), alkaline phosphatase
(ALP) etc. altered by paracetamol treatment. Recently,
Mohamed et al. [95] reported hepatoprotective potential
of methanol extract of L. inermis leaves against carbon
tetrachloride (CCly)-induced hepatic damage. It was
found that extract treatment significantly protected rats
from hepatic damage induced by CCl,.

Lipid peroxidation is critical marker of oxidative stress
and is coupled with various diseases including cancer
[96, 97]. Malondialdehyde (MDA) and lipid hydroperox-
ides are produced as the result of lipid peroxidation of
polyunsaturated fatty acids [86, 92]. Results of the
present investigation demonstrated that 2-AAF treat-
ment resulted in 2.94 fold increase in the MDA level in
rats. Further, treatment of rats with But-LI along with 2-
AAF reversed the effect of 2-AAF as reflected from
lower level of MDA. Our results are in agreement with
previous studies [34, 88, 94, 95], in which natural plant
products effectively reduced lipid peroxidation induced
in response to various toxicants. Further, results of histo-
pathological examination were also in concordance with
results of other parameters and provided supportive evi-
dence regarding protective potential of Lawsonia inermis
(But-LI) fraction. It was found that 2-AAF administra-
tion to the male Wistar rats caused severe damage to
the liver tissue, since it showed various histopathological
alterations such as moderate piecemeal necrosis, mild
confluent and spotty necrosis, moderate portal inflam-
mation etc. with necroinflammatory score of 6 out of 18.
The untreated, vehicle and negative control group rats did
not demonstrate such pathologies in their liver tissue
and necroinflammatory score was found to be zero.
All the 3 doses (100, 200 and 400 mg/kg bw) pro-
vided protection against damage induced by 2-AAF
with necroinflammatory score of 1 out of 18 at high-
est tested dose (400 mg/kg bw) and histoarchitecture
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of the animals in these groups was comparable to
untreated control group. Hepatoprotection can be
achieved either by reinstating the normal hepatic
physiology or by diminishing the toxic damaging
effect induced by toxicant [98]. The in vivo protective
activity of But-LI of Lawsonia inermis against 2-AAF
could be attributed to the various polyphenolic phyto-
chemicals present in the fraction.

Conclusions
The present experimental findings revealed that phyto-
constituents of Lawsonia inermis L. possess potential to
protect rats from the 2-AAF induced hepatic damage in
vivo possibly by inhibition of radicals and lipid
peroxidation.
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