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Abstract

Background: This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn

(TFSD) on PCV2 induced oxidative stress in RAW264.7 cells.

Methods: Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were

then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress
related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed
using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits.

Results: PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both
XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating
with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to

a level similar to control.

Conclusion: Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in
RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic

drug for reactive oxygen-associated pathologies.
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Background

Increased generation of reactive oxygen species (ROS)
and changes in redox homestasis have been reported in
the context of many viral infections [1-6] and the failure
to maintain an appropriate redox balance contributes to
viral pathogenesis through alteration of biological struc-
tures and the massive induction of cell death [7]. Porcine
circovirus type 2 (PCV2), a small, nonenveloped, single-
stranded DNA virus, is the main pathogen of porcine
circovirus diseases (PCVD) including porcine respiratory
disease complex, enteric disease, reproductive disease,
porcine dermatitis and nephropathy syndrome and post-
weaning multisystemic wasting syndrome (PMWS)
[8-13]. In recent decades, PCVD caused huge economic
losses on global swine industry. PCV2 infection induces
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oxidative stress and immunosuppression in pigs which
further facilitate virus replication [14]. It has been re-
ported that there was a time-dependent increase in ROS
following PCV2 infection and oxidative stress induced
by H,O, enhanced PCV2 replication in PK-15 cells.
Antioxidant N-acetyl-1-cysteine (NAC) treatment was able
to inhibited PCV2 replication inside the kidney cells,
whereas GSH depletion with buthionine sulfoximine
(BSO) resulted in elevation of ROS levels and increased
PCV2 replication [15]. PCV2 infection might be promoted
by ROS-induced NF-«B activation, as inhibiting the activ-
ity of NF-«B, a redox-responsive transcription factor,
suppressed BSO-mediated increase of PCV2 replica-
tion [15]. PCV2 infection induced elevation of ROS
level and release of proinflammatory factors, such as
IL-1B, IL-10, IL-8 and TNF-a, resulting in decrease of
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cell viability [16]. Previous studies in our laboratory
showed that total superoxide dismutase (T-SOD) activity,
total antioxidant capacity (TAOC) and GSH level of
PCV2-infected mice spleen and thymus were significantly
decreased [17]. Oxidative stress model induced by PCV2
has been successfully established in RAW?264.7 cells which
represented with remarkably elevation of NO level,
MPO activity, iNOS expression and decrease of GSH/
GSSG ratio, hydroxyl radical inhibitory capacity and
cell viability [14].

The traditional method for viral diseases prevention is
vaccination, which have disadvantages of limited protec-
tion period and cannot eradicate virus [18]. Besides, no
vaccines are available for effective prevention of com-
plicated disease such as PCVD. Thus, there is great
demand for alternative methods to control viral disease.
Since oxidative stress are often induced by virus infec-
tion, antioxidants are becoming promising candidate as
therapeutic agents. For example, the thiol antioxidant of
N-acetylcysteine amide (NACA) and antioxidant vita-
mins have been reported to effectively protect RBE4 cells
or patients from HIV-1 induced toxicity by inhibiting
oxidative stress formation [19, 20]. Previous studies
found that the antoxidant trace element Selenium (Se)
could affect the progression of some viral infections and
suppress PCV2 replication in PK-15 cells [21-23]. Our
previous studies found that carboxy methyl pachymaran
(CMP) and Sophora subprosrate polysaccharide were
able to regulate the immunity funtions and oxidative
status by increasing the production of glutathione
(GSH), superoxide dismutase (SOD) activity and total
antioxidant capacity in PCV2 infected mice or RAW264.7
cells [14, 17].

Spatholobus suberectus (S. suberectus) Dunn is a widely
used traditional medicines which possesses pharmaco-
logical activities of blood circulation improvement, anti-
platelet, anti-inflammation, anti-bacterial, neuroprotection,
and anti-cancer effects [24, 25]. Water extract component
of S. suberectus Dunn showed strong free radical scaven-
ging activity and antioxidative effect [26]. It is speculated
that S. suberectus Dunn might be useful for the prevention
and treatment of reactive oxygen-associated pathologies.
There are many secondary compounds in S. suberectus
Dunn, and flavonoids are the major bioactive substances,
such as 3",4",7-trihydroxyglavone, formononetin, calycosin,
prunetin, eriodictyol, butin, liquiritigenin, plathymenin,
dihydroquercetin and dihydrokaempferol [27]. Effect of the
flavonoids, the major bioactive substances of S. suberectus
Dunn, on PCV2 induced oxidative stress both in vitro and
in vivo has been not reported.

In the present study, the cellular toxicity of total flavo-
noids of S. suberectus Dunn (TESD) was firstly evaluated
and the regulatory role of TESD on PCV2 induced oxi-
dative stress in RAW264.7 cells was investigated.
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Methods

Reagent

Vitamin C, dimethylsulfoxide (DMSO), sodium dodecyl
sulfonate (SDS), naphthylethylenediamine dihydrochloride,
sulphanilamide, phosphoric acid (H3PO,), ethylene diamine
tetraacetic Acid (EDTA), 2',7 -dichlorofluorescein diacetate
(DCFH-DA), 3-4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2-H-tetrazoliumbromide (MTT), o-Phthalaldehyde (OPA),
and n-ethylmaleimide (NEM) were obtained from Sigma,
USA. High glucose DMEM medium, penicillin sodium
and streptomycin were obtained from Gibco, USA. Fetal
bovine serum (FBS) were purchased from PAN, Germany.
Commercial kits for the analysis of superoxide dismutase
(SOD), xanthine oxydase (XOD) and myeloperoxidase
(MPO) were purchased from Nanjing Jiancheng Bioengin-
eering Institute, China. All other reagents were analytical
grade and used as received.

TFSD preparation

S. suberectus Dunn which was collected in Chongzuo,
Guangxi province, China in 2014, was purchased from
the Chinese herbal medicine market in Zhongyao road
in Nanning, Guangxi province. It was identified in the
lab of pharmacology at Animal Science and Technology
College, Guangxi University. The S. suberectus Dunn
was first ground into coarse powder and total flavonoids
of S. suberectus Dunn (TFSD) was then extracted from
the coarse powder of S. suberectus Dunn using ethanol
extraction. The total flavonoid content of obtained prod-
uct has been determined to be 58.00% via ultraviolet
spectrophotometry using rutin as standard as previously
described [28, 29]. 5 mg of the yellow color TFSD was
dissolved in PBS solution containing 1% of DMSO and
filtered with a 0.22 pm membrane to prepare the stock
solution (5 mg/mL). And then it was diluted to define
concentration using complete medium upon used.

Virus and cells

PCV2 was provided by the Key Laboratory of Animal Dis-
eased Diagnostic and Immunology of Ministry of Agricul-
ture at Nanjing Agricultural University and amplified using
PK-15 cells. Titers of PCV2 were determined to be 10*”
TCID50/0.1 mL using the Reed-Muench assay and diluted
with the culture medium to 10*” TCIDj, for the following
experiments. PK-15 and RAW264.7 cells were purchased
from the Type Culture Collection of Chinese Academy of
Sciences, Shanghai, China. Both cells were cultured in
DMEM supplemented with 10% of heat-inactivated FBS,
100 U/mL penicillin sodium and 100 pg/mL streptomycin
in a humidified atmosphere at 37 °C, 5% CO,.

Determination of the cellular toxicity of TFSD
The cytotoxicity of TESD were analyzed using MTT
assay. Briefly, RAW?264.7 cells (1 x 10° cells/well) were
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cultured in a 96-well plate overnight. The supernatant
was removed and the cells were treated with various
concentration of TFSD for 48 h. Supernatant was re-
placed with fresh medium containing 0.5 mg/mL MTT.
After 4 h incubation at 37 °C, 100 uL 10% SDS solution
with 0.01 M HCI was added to dissolve the purple crystals.
After overnight incubation, the optical density (OD) at
595 nm were measured using a automatic microplate
reader (PerkinElmer EnSpire). The viability of cells treated
with TFSD was calculated as percentage of control.

Establishment of PCV2 induced oxidative stress in
RAW264.7 cells and TFSD treatment

RAW264.7 cells (1 x 10° cells/well) were cultured in 24-
well plates overnight. The supernatant was discard and
the cell monolayer was washed with 0.1 M PBS (pH 7.2)
for three times. The cells were then incubated with 10*”
TCIDso PCV2 for 2 h to allow virus adhere to and enter
cells. The virus was removed and cells were washed with
PBS for three times, followed by treating with TFSD in
concentrations of 25, 50 or 100 pg/mL. Completed
DMEM medium without TFSD was added into control
group without PCV2 infection and model group with
PCV2 infection. Vitamin C (Vc) was used as the drug for
positive control. The cells were further cultured for 12 h.

Analysis of nitric oxide (NO) secretion

The secretion of NO was studied by a spectrophotomet-
ric assay based on the Griess reaction [30]. Briefly,
100 pl of the culture supernatant was mixed with an
equal volume of Griess reagent (freshly mixed 0.1%
naphthylethylenediamine dihydrochloride solution and
1% sulphanilamide in 5% H3;PO, solution in a volume
ratio of 1:1) at room temperature. The mixture was
allowed to react for 15 min at room temperature, and
the absorbance at 540 nm was measured on an auto-
matic microplate reader (PerkinElmer EnSpire). The
NO concentration was determined by a standard curve
of NaNO,.

Fluorescence assay of ROS

The cells were grown in black 96-well plates with trans-
parent bottom for the analysis of ROS using the fluores-
cent probe of DCFH-DA [31]. After removing the culture
medium, the cells were washed with PBS for three times.
50 pL of DCFH-DA (10 uM/L) was added into each well
and incubated in dark for 30 min at 37 °C. The Cells were
washed with PBS for three times and fluorescent intensity
was measured at 485 nm for excitation and 530 nm for
emission on an automatic microplate reader (PerkinElmer
EnSpire).
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Detection of intracellular GSH and oxidized glutathione
(GSSG)

The cells were scraped down from the bottom of 24-well
plates and collected by centrifuging at 2000 rpm for
5 min. The cell pellet was resuspended with 0.4 mL of
5% trichloroacetic acid (TCA) and ultrasonic decomposed
in an ice-water bath for 1.0 min with 2 s on and 2 s off.
The cell lysate was centrifuged at 12,000 rpm for 15 min at
4 °C and the supernatant was used for GSH and GSSG as-
says. 3.6 mL phosphate-EDTA buffer (pH 8.0) and 200 pL
OPA (1 mg/mL) was added into 200 pL of the supernatant
and incubated for 40 min at room temperature. Fluores-
cent intensity was measured using a automatic microplate
reader (PerkinElmer EnSpire) at an excitation wavelength
of 350 nm and an emission wavelength of 425 nm. For the
GSSG analysis, 40 uL. NEM (0.04 mol/L) was added to an-
other 100 pL of supernatant and incubated for 30 min at
room temperature. 1.9 ml of NaOH (0.1 mol/L) and
100 pL of OPA (1 mg/mL) were added into the mixture
and incubated for another 15 min at room temperature.
Fluorescent intensity were measured with excitation wave-
length of 337.8 nm and emission wavelength of 421.6 nm
on an automatic microplate reader (PerkinElmer EnSpire).
The concentrations of both GSH and GSSG were deter-
mined by standard curves of GSH and GSSG.

Determination of activities of SOD, XOD and MPO

The activities of intracellular superoxide dismutase (SOD),
xanthine oxydase (XOD) and myeloperoxidase (MPO) were
evaluated using commercial kits following the manufac-
turer’s instructions.

Statistical analysis

Statistical analysis was performed using the software of
SPSS version 17.0. Data were analyzed using one-way
analysis of variance (ANOVA) followed by the Duncan
test. Data are expressed as means = SD. Differences were
regarded as significant at P < 0.05.

Results

Cytotoxicity of TFSD on RAW264.7 cells

Before further studies were conducted, TFSD was firstly
tested for its effect on the cellular viability of RAW264.7
cells using MTT assay (Fig. 1). When the concentration
of TESD was lower than 100 pg/mL, the cell viability
were greater than 80% and no significant difference has
been observed when compared to control. However, as
the concentration of TFSD increased to a level higher
than 200 pg/mL, the viability of RAW264.7 cells were
significantly decreased, indicating inhibition of cell pro-
liferation by TESD. Thus, concentrations of 25, 50 and
100 pg/mL were selected for further study.
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Fig. 1 Viability of RAW264.7 cells after treating with various concentrations of TFSD for 48 h. Data are presented as mean + S.D. Bars with * indicate
statistically different from control (P < 0.05)

NO contents and ROS production

Regulatory effects of TFSD on NO contents and ROS pro-
duction in PCV2 infected cells were showed in Fig. 2.
Compared to control, PCV2 infection induced signifi-
cantly up-regulated NO secretion and intracellular ROS

production. Vitamin C, a widely used antioxidant, was
able to inhibit the elevation of NO and ROS content in-
duced by PCV2 infection. Cells treated with TFSD
exhibited similar results to those treated with Vc. Com-
pared to PCV2 group, NO secretion in 50 pg/mL TESD
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Fig. 2 Effect of TFSD on NO secretion (a) and ROS production (b) in PCV2 infected RAW264.7 cells. Data are presented as mean + S.D. Bars with
different fetters are statistically different (P < 0.05). Control: cells without PCV2 infection and drug treatment; PCV2: cells infected with 1027 TCIDsq
PCV2; PCV2 + Vc: cells treated with 100 pug/mL of vitamin C after PCV2 infection; PCV2 + TFSD25-100: cells treated with TFSD at concentrations of
25, 50 or 100 pg/mL after PCV2 infection, respectively




Chen et al. BMC Complementary and Alternative Medicine (2017) 17:244

treatment group and ROS production in all TESD treated
groups was significantly decreased (P < 0.05) (Fig. 2).

GSH and GSSG contents

Effects of TFSD on intracellular GSH and GSSG content
are shown in Fig. 3. The intracellular GSH level was sig-
nificantly decreased after infected with PCV2 (Fig. 3a)
and treatment with TFSD at concentrations of 50 and
100 pg/mL was able to inhibit the reduction of GSH
level (P < 0.05). In contrast, PCV2 infection resulted in
an elevation of intracellular GSSG content, while TFSD
treatment (50 and 100 pg/mL) was able to decrease GSSG
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level compared to PCV2 group (Fig. 3b). In addition, the
ratio of GSH to GSSG showed similar trend to that of
GSH content, which was significantly increased in virus
infected cells but recovered to a level close to control after
TESD treatment (Fig. 3c).

SOD activity

Compared to control, the SOD activity in RAW264.7
cells was significantly decreased when cells were infected
with PCV2 (P < 0.05) (Fig. 4). Antioxidant (Vc and
TFSD) treatment was able to inhibit the reduction of
SOD activity. In 50 and 100 pg/mL TFSD groups, the

.

ab

PCV2+TFSD25 PCV2+TFSD50 PCV2+TFSD100

b
a
a

PCV2+TFSD25 PCV2+TFSD50 PCV2+TFSD100

ab

a

+

a 3
25 a
T +
-
§ 20
=} b
£
315
S
=}
7
O 10
5
0
Control PCV2 PCV2+Ve
b«
b
25
-~~~
= 2
=
)
£
SRt a
U a
7
U 10
5
0
Control PCV2 PCV2+Ve
C 45 ¢
40 | a a
35 | _
3.0
2
@ o2 | b
Qo
<
T 20
7]
S
1.0
0.5
0.0
Control PCV2 PCV2+Ve

Fig. 3 Effect of TFSD on intracellular GSH concentration (a), GSSG content (b) and GSH/GSSG ratio (c) in PCV2 infected RAW264.7 cells. Data are
presented as mean + S.D. Bars with different fetters are statistically different (P < 0.05). Control: cells without PCV2 infection and drug treatment;
PCV2: cells infected with 107/ TCIDs, PCV2; PCV2 + Vc: cells treated with 100 ug/mL of vitamin C after PCV2 infection; PCV2 + TFSD25-100: cells
treated with TFSD at concentrations of 25, 50 or 100 pg/mL after PCV2 infection, respectively
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SOD activity was significantly higher than that of PCV2
group (P < 0.05).

XOD and MPO activities

PCV2 infection caused significantly increase of XOD and
MPO activities (Fig. 5) while treatment of infected cells
with TESD at concentrations of 50 and 100 pg/mL was
able to promoted the activity of XOD and MPO. The re-
covery of XOD and MPO activities to a level similar to
control by treating with antioxidant (Vc and TFSD) sug-
gested that antioxidant can protect RAW264.7 cells from
oxidative stress damage induced by PCV2 infection.

Discussions

Upon viral infections, the antiviral and inflammatory sig-
naling pathways will be activated, which has been reported
to associate with the production of ROS [1, 32-35]. For
example, infection of Kaposi’s sarcoma-associated herpes-
virus (KSHV) or H5N1 induced ROS production and sig-
naling pathways amplification, which facilitated virus
invasion and replication [36, 37]. Oxidative stress with in-
creased inflammatory cytokines secretion was reported in
Dengue virus infected patients [38], while the oxidative
stress induced damage and alterations in redox status are
believed to related to increasing severity of the disease
[39, 40]. PCV2, the main pathogen accounts for
PMWS, has been reported to infected PK-15 cells,
RAW?264.7 cells and mice to induce oxidative stress
[14, 17, 22]. In the present study, the levels of intracel-
luar oxidants (NO, ROS, GSSG) and activities of intra-
cellular oxidase (XOD and MPO) were significantly
increased, while the antioxidant species content (GSH)
and antioxidase activity (SOD) was remarkably decreased
in RAW264.7 cells after infected with PCV2 at a titer of
10*” TCIDsy, indicating the creation of oxidative stress in
infected cells.

In macrophages, NO is synthesised from L-arginine
and excess NO interact with oxygen radicals to produce
peroxynitrite (ONOO™) which might lead to proteins
injury, DNA damage and phospholipid membranes dam-
age [41, 42]. Increased production of NO has been
observed during viral infection, which in turn promotes
viral replication [43, 44]. On the other hand, accumulated
ROS not only helps to viral invasion and/or replication
but also leads to cell injury by attacking biomacromole-
cules which can lead to immunosuppression and cell
apoptosis [45]. The damage of biomacromolecules gener-
ates extra ROS which in turn aggravates oxidative stress
status [46, 47]. In addition, the effects of NO and ROS can
be synergistic by depleting the intracellular antioxidant
glutathione. It was assumed that PCV2 infection induced
accumulation of NO and ROS accounts for the decrease
in cell viability [14]. Thus, clearance of excess NO and
ROS and preventing their accumulation is highly import-
ant. In this study, PCV2 infection induce significantly ele-
vated production of NO and accumulation of intracellular
ROS (Fig. 2), agreed with previous studies. TESD treat-
ment was able to inhibit the PCV2 induced increase of
NO and ROS, suggesting that TFSD might protect cells
from damage caused by excess NO and ROS.

Normally, ROS can be cleared away by oxidizing intra-
celluar GSH to GSSG, and thus GSH to GSSG ratio is
an important indicator of cell antioxidant capacity
[48]. Decreased extracellular and intracellular ratio of
GSH to GSSG has been observed in patients infected
by HCV or Dengue virus, suggesting enhanced glutathi-
one turnover in the liver, blood and lymphatic system
of infected patients [38, 49, 50]. Figure 3 shows that
TESD treatment was able to increase GSH level and
the ratio of GSH to GSSG in PCV2 infected
RAW264.7 cells, suggesting that TESD has antioxidant
effect which can recover the intracellular oxidative
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status, agreed with Matthaiou’s report that Pomegranate
juice, which contains majorly flavonoids, can increase
GSH levels in human blood [51].

Antioxidant enzymes are the primary defense that pre-
vents biological macromolecules from oxidative stress
induced damage. SOD has been considered as one of the
most important enzymes in the enzymatic antioxidant
defense system. It catalyzes the dismutation of super-
oxide radicals to produce H,O, and molecular oxygen,
and thus protects against oxidative processes initiated by
the superoxide anion. Generation of free radicals such as
superoxides is believed to play an essential role in the
pathogenesis of various infectious diseases [52]. Decreased
SOD activities have been detected in PCV2 infected
splenic lymphocytes and RAW264.7 cells in vitro [14, 53].
In the current study, SOD activity was significantly de-
creased in PCV2 infected RAW264.7 cells, while such en-
zyme activity reduction can be reversed by treatment with
50 or 100 pg/mL TFSD, suggesting that TFSD can clear

away ROS and increase activities of antioxidase in PCV2
infected disease.

MPO, a member of the super family of mammalian
heme peroxidase enzymes, catalyze the H,O,-mediated
oxidation of halide ions to hypohalous acids (HOCI) to
kill invaded microbials. However, high concentration of
HOCI will oxidize biomacromolecules and thus resulted
in damage to normal tissues. Higher plasma MPO was
found upon hepatitis B virus (HBV) infection which was
thought to account for the liver injury in infected
patients [14]. XOD is the enzyme responsible for the
metabolism of hypoxanthine and xanthine to uric acid.
Superoxide radicals were produced during this metabol-
ism which will attack biomacromolecules to induce
damage and extra ROS. In this study, MPO and XOD
activities were significantly increased upon PCV2 infec-
tion which might contributed to the elevation of ROS
content and decreased of GSH level. Treating with TESD
was able to inhibit the virus induced alteration of MPO
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and XOD activities, suggesting that TFSD can protect
RAW?264.7 cells from damages caused by PCV2 infec-
tion. These results are consistent with the report that
flavonoids was able to inhibit XOD activity and clear
away superoxide [54-56].

Conclusions

In conclusion, oxidative stress was established in PCV2
infected RAW264.7 cells, represented by significantly in-
creased NO secretion, intracellular ROS content, MPO
activity, XOD activity, and remarkably reduced GSH
levels, GSH/GSSG ratio, SOD activity. Treatment of in-
fected cells with TESD dramatically increased GSH level,
GSH to GSSG ratio and SOD activity, reduced the intra-
cellular ROS content and inhibited the MPO and XOD
activity. All these results suggest that TFSD is an anti-
oxidant candidate for the prevention and treatment of
oxidative stress associated disease, including disease caused
by virus infection.
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