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Abstract

Background: Physalin A isolated from Physalis alkekengi var. franchetii has been known to have many pharmacological
properties. However, its effect through the Nrf2 pathway has not yet been elucidated. In the present study, we
determined the effects of physalin A on cancer chemoprevention via the Nrf2 pathway.

Methods: Experiments were performed in Hepa-1c1c7 and HepG2 cells. The quinone reductase (QR) activity assay was
used to assess the activity of physalin A and other compounds isolated from P. alkekengi. The antioxidant response
element (ARE) reporter assay was used to determine physalin A induced transcription of Nrf2 target genes, whereas the
oligonucleotide pull-down assay was used to investigate Nrf2 binding to the AREs post physalin A treatment. Real-time
PCR and western blotting were performed to determine the expression of Nrf2 target genes. Immunocytochemistry was
used to determine Nrf2 localization after treatment with physalin A. Kinase inhibitors were used to test the involvement
of Nrf2-targeting kinases and the role of ERK and p38 phosphorylation was confirmed using western blotting.

Results: Physalin A significantly induced QR activity. As an upstream effector of QR, Nrf2 induced genes containing the
ARE, which encode various antioxidants and detoxification enzymes. We observed that physalin A increased the
expression of Nrf2 and its target genes in HepG2 cells. Moreover, we observed that physalin A-induced Nrf2 activation
was regulated by ERK and p38 kinase in HepG2 cells.

Conclusions: Taken together, we showed that physalin A increased detoxifying enzyme expression via activation of Nrf2
and its target genes. These results imply that physalin A could be a potential chemopreventive agent for liver diseases,

as well as cancer.

regulated kinase, p38 mitogen-activated protein kinase
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Background

Liver cancer, the fifth-most common cancer worldwide, is
the third-most common cause of mortality due to cancer
[1]. Furthermore, liver cancer-associated mortality in both
men and women is higher than the diagnostic rates [2].
Thus, prevention of liver cancer is of utmost importance.
Synthetic or natural pharmaceutical agents mainly used,
especially, traditional medicine is useful to prevent the
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development of various diseases, including cancer due to
their safety and affordability [3-5].

Phytochemicals, especially plant-derived compounds, are
used in clinical trials as cancer chemopreventive agents [6].
For example, sulforaphane is a representative phytochem-
ical obtained by hydrolysis of glucoraphanin, which is
abundant in broccoli. Sulforaphane inhibits cancer growth
and the overall carcinogenetic process by inducing phase II
enzymes, including quinone reductase (QR, NAD(P)H:
quinone oxidoreductase) and glutathione S-transferases
(GSTs) [6, 7].

Nuclear factor erythroid 2-related factor 2 (Nrf2), a
member of the basic leucine zipper transcription factor
family, regulates the expression of genes containing the
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antioxidant response element (ARE) in the promoter re-
gion, which are related to antioxidation and detoxifica-
tion. Under normal conditions, Nrf2 dimerizes with
Kelch-like ECH-associated protein 1 (Keapl) [8] (Fig. 1).
Nrf2 protects cells from stress inducers such as en-
dogenous reactive molecules, radiation, and environ-
mental toxins [9]. When cells are exposed to stress, Nrf2
separates from Keapl in the nucleus and activates its
target genes [10]. Several kinases such as ERK1/2, PKC,
PI3K, and AMPK regulate Nrf2 expression [11-14].
Nrf2 targets such as heme oxygenase-1 (HO-1),
NAD(P)H quinone oxidoreductase (NQO-1), and GSTs
encode phase II detoxification enzymes [15]. HO-1, a
cytoprotective enzyme, regulates antioxidative and
inflammatory responses, and NQO-1 is involved in de-
toxification [8], which may inhibit cancer initiation by
detoxifying and eliminating carcinogens [16]. In
addition, previous studies have reported an association
of the QR-encoding gene with risks of developing vari-
ous cancers [17, 18]. Therefore, QR can be targeted for
developing potential cancer chemopreventive agents.
Physalis alkekengi var. franchetii (Solanaceae) is found
in East Asia and is known to ameliorate otitis media,
fever, sore throat and renal diseases [19] [20]. Physalin
A, one of the major bioactive compounds isolated from
P. alkekengi possesses many pharmacological properties,
including antifungal, anti-cough, anti-inflammatory, and
analgesic activities in vivo and in vitro [21]. Physalin A
induces apoptotic cell death in various cell lines and in-
duces G2/M cell cycle arrest in human lung cancer cells
[22, 23]. However, the chemopreventive effect of physa-
lin A via the Nrf2 pathway has not yet been elucidated.
In this study, we investigated the effect of P. alkekengi
and physalin A on cancer chemoprevention via the Nrf2
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pathway. Physalin A induced Nrf2 and its target genes
encoding HO-1 and NQO1 via ERK and p38 kinases in
HepG2 cells.

Methods

Chemicals and reagents

P. alkekengi was purchased from a Kyungdong oriental
herbal market, Seoul, Republic of Korea. The voucher
specimens (ND4) have been deposited at the Systems
Biotechnology Research Center, KIST, Gangneung Insti-
tute of Natural Products, Republic of Korea. This plant
identified by Dr. Hak Cheol Kwon who responsible for
KIST natural products library at KIST Gangneung, insti-
tute of natural products. Dried P. alkekengi (2.5 kg) were
extracted using 95% ethanol for 4 h by reflux. After fil-
tration, the ethanol were evaporated in a vacuum to ob-
tain the ethanol extract (203 g), which was suspended in
distilled water and partitioned using n-hexane, ethyl
acetate, and n-butanol. The ethyl acetate fraction (15 g)
was chromatographed on a Sephadex LH-20 column,
eluted using methanol to obtain five fractions (fractions
1-5). Physalin A was re-chromatographed from fraction
3 using Sephadex LH-20 (methanol) and RP-18 gel
[methanol-water (40 — 70%, v/v)] column chromatog-
raphy to obtain white crystals. The chemical structures
of compound 1 was determined by 'H and **C nuclear
magnetic resonance and the results were compared with
published data [24].

Dulbecco’s high glucose modified Eagle medium
(DMEM) (Hyclone, Logan, UT, USA), fetal bovine
serum (FBS), 100U/ml penicillin, and 100 pug/ml
streptomycin were obtained from Thermo Scientific
(Waltham, MA, USA). 3-(4,5-Dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide (MTT) and
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Fig. 1 Mechanism of the Nrf2 pathway. Under oxidative stress condition, Nrf2 separates from Keap1 via phosphorylation of it by various kinases.
Nrf2 translocated into nucleus and binds to ARE region on promoter of the target gene including HO-1 and NQO-1
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bovine serum albumin were purchased from Sigma-
Aldrich (St, Louis, MO, USA).

Cell culture

Hepa-1clc7 (mouse hepatoma cells) and HepG2 (human
hepatocellular carcinoma cells) were purchased from the
American Type Culture Collection (ATCC, Manassas,
VA, USA). The cells were maintained at sub-confluence
in the presence of 95% air and 5% CO, in a humidified
atmosphere at 37 °C. DMEM and o-MEM were used for
HepG2 and Hepa-1clc7 cell cultivation, respectively.
The media were supplemented with 10% FBS, 100 U/ml
penicillin, and 100 pg/ml streptomycin.

Quinone reductase (QR) assay

Specific QR activity was measured using a previously re-
ported QR assay [25, 26], after brief modifications.
Hepa-1clc7 cells (1 x10* cells/well) were plated on
96-well culture plates and incubated for 24 h before
treatment with five compounds isolated from P.
alkekengi including physalin A (Fig. 2). The absorbance
at 610 nm was determined five times at 50s intervals
using a Synergy HT multi-microplate reader (Bio-Tek
Instruments, Winooski, VT, USA).

Cell viability assay

Cell viability was measured using the WST-1 cell prolif-
eration assay kit (EZ-Cytox; Daeil Lab, Seoul). HepG2
cells (1x10* cells/well) were plated in 96-well culture
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plates and incubated at 37 °C for 24 h, followed by treat-
ment with various concentrations of physalin A. After
24 h of treatment, we added 1/10 diluted EZ-Cytox solu-
tion to each well and incubated for 1 h 20 min. Then, ab-
sorbance was measured at 450 nm using Synergy HT
multi-detection microplate reader.

Preparation of nuclear and cytosolic fractions

HepG2 cells (6 x 10° cells/well) were plated in 6-well cul-
ture plates and incubated for 24 h prior to physalin A treat-
ment. Nuclear and cytosolic fractions were prepared using
a nuclear extraction kit (Cayman, Ann Arbor, MI, USA).

Western blot analysis

HepG2 cells (6x10° cells/well) were plated in 6-well
culture plates and incubated for 24 h prior to physalin A
treatment. Cell lysate was prepared using ice-cold radioim-
munoprecipitation assay (RIPA) buffer (Thermo Scientific)
containing phenylmethane sulfonyl fluoride (PMSF) and a
protease inhibitor cocktail (Sigma, St. Louis, MO, USA),
followed by centrifugation for 25 min at 4 °C. Protein con-
centrations were determined using protein assay dye re-
agent concentrates (Bio-Rad, Hercules, CA, USA). Total
cell lysates, and nuclear and cytosolic fractions were loaded
on 10% sodium dodecyl sulfate polyacrylamide gels, electro-
phoresed, and then transferred to polyvinylidene difluoride
membranes (Bio-Rad). The membranes were blocked using
3% bovine serum albumin (BSA), followed by incubation
with primary antibodies against the following proteins:
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Fig. 2 Structure of physalin A, physalin O, luteolin, methyl chlorogenic acid
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B-actin, NQO-1, HO-1, LaminB (Santacruz Biotechnology,
Santa Cruz, CA, USA); Nrf2 (Abcam, Cambridge, MA,
USA); ERK, p-ERK, p38, and p-p38 (Cell Signaling Tech-
nology, Denvers, MA, USA) in 3% BSA. The western blots
were developed using SuperSignal™ West Femto maximum
sensitivity substrate reagent (Thermo Scientific).

Total RNA extraction and quantitative reverse
transcription-polymerase chain reaction (QRT-PCR)

Total RNA was extracted from HepG2 cells using the
RNeasy mini kit (Qiagen, Hilde, Germany) according to
the manufacturer’s instruction. cDNA was synthesized
using the PrimeScript™ first strand ¢cDNA synthesis kit
(Takara, Shiga, Japan) according to the manufacturer’s
instruction. qRT-PCR analysis was performed using the
LC480 detection system (Roche, Basel, Switzerland).

ARE reporter assay

HepG2 cells (1 x 10° cells/well) were plated in 24-well cul-
ture plates and incubated for 24 h, followed by physalin A
treatment. The cells in each well were transfected with
04 pg ARE-luc reporter construct containing human
NQO-1 sequences and 50ng of pRL-CMV transfection
control vector using the TransIT-2020 transfection reagent
(Mirus Bio, Madison, W1, USA) according to the manufac-
turer’s instructions. The reporter assay was performed
using a dual luciferase assay kit (Promega, Madison, W1,
USA) and Synergy HT multi-detection microplate reader.

Oligonucleotide pull-down assay

HepG2 cells (3 x 10° cells/well) were plated in 100-mm
culture dishes and incubated for 24 h, followed by physalin
A treatment. The cells were lysed in HKMG buffer (10
mM HEPES (pH 7.9), 100 mM KCl, 5mM MgCl, 1 mM
dithiothreitol (DTT), 10% glycerol and 0.5% NP-40), and
the cell lysates were incubated overnight with biotinylated
oligonucleotides. The sequence of the oligonucleotide is
as follows: 5'-AAATCGCAGTCAC- -AGTGACTCAG-
CAGAATCTGAGCCTAGG-3". To obtain the nucleotide
bound protein, the samples were incubated with
streptavidin-agarose resin (Thermo Scientific) for 6 h at 4°
C, and then washed with HKMG buffer. The washed sam-
ples were used for western blot analysis.

Immunocytochemistry

The cellular distribution of Nrf2 was determined using
immunofluorescence assay and confocal microscopy as
previously described [27]. In brief, HepG2 cells (2 x 10%
cells/well) were plated on glass coverslips in 24-well
plates, and incubated for 24 h prior to treatment. Next,
the cells were incubated with primary antibody against
Nrf2 (1:150; Cambridge, UK) overnight at 4°C. Alexa
Fluor 488-conjugated anti-rabbit (Invitrogen, Carlsbad,
CA, USA) secondary antibody was used at 1:200 dilution
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for 1 h at room temperature. Antibodies were diluted in
phosphate buffered saline-Tween 20 (PBST) containing
5% normal serum and 0.3% Triton X-100. Images were
obtained using a Leica TCS SP5 confocal system (Leica,
Wetzlar, Germany).

Statistical analysis

Results were presented as mean * standard error of the
mean (SEM). Statistical significance was determined using
one-way analysis of variance (ANOVA) and Dunnett’s
multiple comparison test. P<0.05 (calculated using
GraphPad Prism version 7.00) indicated statistically sig-
nificant difference with respect to the control group.

Results

Physalin A induces specific QR activity

QR activity is a measure of the chemopreventive effect of
any compound [7, 28]. We first assessed the specific QR ac-
tivity of the P. alkekengi extract and five compounds derived
from this plant in Hepa-1clc cells. Results showed that the
extract and only physalin A increased specific QR activity in
a dose-dependent manner (Fig. 3a-b). Other compounds,
such as physalin O, luteolin, methyl chlorogenic acid, and
luteolin-7-O-glucoside did not significantly increase QR ac-
tivity (Fig. 3c-f). The P. alkekengi extract and the isolated
compounds did not significantly affect cell viability. Sulfo-
raphane was used as a positive control in these experiments.
These results showed that physalin A is an active compo-
nent responsible for induction of QR activity.

Physalin A induces NQO1 transcription in HepG2 cells

Since physalin A was the active component required for
QR activity, we performed cell viability assay using
3.125-100 uM  physalin A (Fig. 4a) to determine the
non-cytotoxic concentration range that can be used in
further experiments involving HepG2 cells. No signifi-
cant cytotoxicity was observed below 25 uM (Fig. 4a).

To investigate whether physalin A induces QR activ-
ity through the Nrf2 pathway, we measured Nrf2
mRNA level and ARE activation. Nrf2 upregulated
genes encoding phase II detoxification enzymes, such
as NQO-1, by binding to the ARE in the target gene’s
promoter regions [8]. qRT-PCR and western blotting
showed that physalin A increased NQO-1 mRNA ex-
pression (Fig. 4b) and the protein levels of Nrf2 target
genes, respectively (Fig. 4e). To determine whether
physalin A activated the ARE by promoting Nrf2 bind-
ing, we performed an oligonucleotide pull-down assay
and a reporter assay using a construct containing the
ARE (Fig. 4d). Also, we observed that the binding of
Nrf2 to ARE was increased by physalin A in HepG2
cells in a dose-dependent manner (Fig. 4c).
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Fig. 3 Induction of QR-specific enzymatic activity in Hepa-1cic7 cell line (a). QR assay and viability assay of Hepalclc7 cells treated with P.
alkekengi (b) physalin A, (c) physalin O, (d) luteolin, (e) methyl chlorogenic acid, and (f) luteolin-7-O-glucoside. (g) QR assay and viability assay of
sulforaphane-treated Hepa-1c1c7 cells. The cells treated for 24 h with 5 uM sulforaphane as a positive control. (*: p < 0.05, **: p < 0.01, ***: p <
0.001, ****: p < 0.0001)

Physalin A induces Nrf2 expression and nuclear
accumulation

To confirm that physalin A increases Nrf2 expression and
nuclear accumulation, we assessed Nrf2 expression at vari-
ous time points and monitored nuclear translocation of

expression in a time-dependent manner (Fig. 5a) when the
cells were treated with 20 pM physalin A. We also observed
that physalin A increased Nrf2 nuclear accumulation in
dose-dependent manner (Fig. 5b-c) when the cells were
treated for 4 h. Thus, these results showed that physalin A

Nrf2 from the cytosol using fluorescent dyes. Nrf2  induces Nrf2 expression and nuclear accumulation.
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Fig. 4 Physalin A induces NQO-1 transcription in HepG2 cells. a Viability of
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physalin A-treated HepG2 cell line. Cells treated with various

concentration physalin A for 24 h. b NQO-1 expression was measured using real-time PCR. ¢ ARE transcriptional activity of physalin A-treated
HepG2 cells. The cells were treated with 5, 10, 20 uM physalin A for 24 h and cell lysates were used for luciferase assay. d Oligonucleotide pull-
down assay in HepG2 cells with ARE element. The cells were treated 20 uM physalin A for 4 h and then harvested to determine ARE-binding
activity. e Western blot analysis to assess the expression of Nrf2 and its target genes, NQO-1 and HO-1 in HepG2 cells. The cells were treated with
10 and 20 uM physalin A (*: p < 0.05, **: p < 0.01, ***: p <0.001, ****: p < 0.0001)
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Fig. 5 Physalin A induces Nif2 nuclear expression and activation. a Western blot analysis of Nrf2 expression in HepG2 cells. The cells were treated with
20 uM physalin A for 0, 2, 4, 8, 12, 24 h. b Western blot analysis of Nrf2 expression in the nuclear fraction. The cells were treated with 10 and 20 uM
physalin A for 4 h. ¢ Immunocytochemistry showing Nrf2 nuclear accumulation in HepG2 cells. The cells were treated with 20 uM physalin A for 4 h
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Physalin A induces Nrf2 activation via ERK and the p38
kinase

A previous study showed that multiple kinases are involved
in the translocation of Nrf2 to the nucleus [11-14]. To
identify the kinases required for physalin A-mediated Nrf2
translocation, we assessed Nrf2 expression after pre-
treatment with several following kinase inhibitors:
LY294002 (inhibitor of PI3K), SP600125 (inhibitor of JNK),
U0126 (inhibitor of ERK), or SB202190 (inhibitor of p38).
Particularly, treatments with U0126 (inhibitor of ERK) and
SB202190 (inhibitor of p38) reduced Nrf2 nuclear accumu-
lation (Fig. 6a). To further confirm if ERK and p38 regulate
Nrf2 activation, the phosphorylated-forms of ERK and p38
were investigated in a time-dependent manner. We ob-
served that physalin A increases ERK and p38 phosphoryl-
ation. We also determined the expression of HO-1, one of
the target genes, in cells treated with physalin A and U0126
or SB202190. Results showed that the expression of Nrf2
and its target genes was considerably reduced after co-
treatment with the inhibitor compared to treatment with
physalin A alone (Fig. 6¢). Thus, these results suggest that
physalin A activates the ERK and p38 kinases to induce
Nrf2 nuclear translocation.

Discussion
Physalin A, isolated from P. alkekengi, is a triterpenoid
with a steroid skeleton, which shows anti-cancer activity

in various cancer cell lines [21, 23, 29, 30]. Terpenoids
are organic chemicals composed of isoprene units and
many of them are of plant origin [31]. The majority of
terpenoids also possess pharmacological properties, in-
cluding anti-cancer, anti-inflammatory, anti-viral, and
anti-fungal activities [31, 32]. Several studies have shown
that terpenoids show anti-cancer activity via MAPK
phosphorylation, including ERK and p38, in various can-
cers [33-35]. In this study, physalin A increased the ex-
pression of detoxification enzymes by activating the Nrf2
pathway via ERK and p38. Therefore, we speculated that
these results might be related to terpenoid structure.
Interestingly, although physalin A and O have a similar
structure, physalin A activated Nrf2 expression and in-
duced phase II detoxification enzymes, whereas physalin
O showed no significant effect on QR activity. The sole
difference in structure between the two compounds is a
double bond between C,5 and C,; [24], which possibly
contributed to the difference in biological activity.

We observed that physalin A activated the Nrf2-ARE
signaling pathway through ERK and p38 phosphoryl-
ation at different time points (Fig. 6b). While ERK phos-
phorylation was observed from 15 min and peaked at 45
min, p38 phosphorylation increased from 60 min on-
wards. These results suggest that ERK phosphorylation
triggers Nrf2 translocation at early time points (within
30 min), followed by p38 kinase phosphorylation at later
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Fig. 6 Physalin A induces Nrf2 and target gene expression through ERK and p38 kinase activation. a Western blot analysis of Nrf2 expression in HepG2
cells pretreated with U0126 (MEK inhibitor), SB202190 (p38 inhibitor), LY294002 (PI3K inhibitor), and SP600125 (JNK inhibitor) for 1 h, followed by treatment
with 20 UM physalin A for 4 h. b Western blot analysis of phospho-ERK and phospho-p38 expression in HepG2 cells treated with 20 uM physalin A for 0,
15, 30, 45, 60, 90, and 120 min. ¢ Western blot analysis of Nrf2 target gene expression in HepG2 cells pretreated with U0126 and SB202190 for 1 h and then
with 20 uM physalin A for 8 h

time points, which induces Nrf2 translocation and nu- because ERK and p38 kinase inhibitors do not com-
clear accumulation. Furthermore, our results suggest pletely abrogate physalin A-induced Nrf2 expression and
that it is not possible to exclude the effect of other tran-  nuclear accumulation. Further studies on the differential
scription factors and upstream signaling molecules in  temporal regulation of these kinases and involvement of
modulating the expression of Nrf2 and its target genes, other factors are required.

-

“OH
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Fig. 7 The hypothetical Nrf2 pathway model induced by physalin A. Physalin A induces the Nrf2 activation and nuclear translocation through Erk or p38
kinase phosphorylation. In the nucleus, ARE binding of Nrf2 induces detoxification gene expression such as NQO-1, HO-1, and QR.
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As an upstream key factor that increases detoxifying en-
zyme activity, Nrf2 regulates the expression of several tar-
get genes. Here, we showed that physalin A induces Nrf2
activation and the expression of its target genes, NQO-1
and HO-1. However, these target genes were not expressed
to similar extents at the same time point. Previously, [36]
demonstrated differential regulation of HO-1 and NQO-1
by ethanol. Ethanol-induced HO-1 expression was regu-
lated by Nrf2, HIF-1a, and JNK, whereas that of NQO-1
was regulated by Nrf2 and Src kinase. Thus, we speculated
that the target genes of Nrf2 induced by physalin A,
including NQO-1 and HO-1, may be regulated by different
kinases and other factors, respectively.

Post nuclear translocation, Nrf2 may be phosphorylated
by an upstream kinase or stabilized by Keapl modifica-
tions. Several dietary phytochemicals cause Keapl-specific
cysteine thiol group oxidation or chemical modification.
Sulforaphane induces phosphorylation of Nrf2 upstream
of the p38 MAP kinase, and Nrf2 stabilization and nuclear
accumulation by specific modifications of Keapl [12, 37,
38]. However, we have not investigated whether physalin
A regulates conformational changes of Keapl in the cyto-
sol. The additional study of the keapl modification should
be required in the future studies.

Conclusions

In conclusion, we showed that physalin A increased de-
toxifying enzyme expression via activation of Nrf2 and
its target genes. The results of the QR assay showed that
physalin A might suppress cancer development at the
initial stage of carcinogenesis by regulating the activity
of phase II detoxification enzymes (Fig. 7). These results
showed that physalin A is a potential chemopreventive
agent that regulates Nrf2 pathway in liver cancer.
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